This administrative history of the Grand Canyon Dam Adaptive Management Program (GCDAMP) includes government reports, oral history interviews and other relevant information about Colorado River law, environmental protection law, hydropower regulation, the Glen Canyon Environmental Studies that served as a precursor to GCDAMP, and the activities of the Adaptive Management Work Group, the Technical Work Group, and the U.S. Geological Survey’s Grand Canyon Monitoring and Research Center.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

149110-Thumbnail Image.png
Description

While the ecology and evolution of partial migratory systems (defined broadly to include skip spawning) have been well studied, we are only beginning to under- stand how partial migratory populations are responding to ongoing environmen- tal change. Environmental change can lead to differences in the fitness of residents and migrants,

While the ecology and evolution of partial migratory systems (defined broadly to include skip spawning) have been well studied, we are only beginning to under- stand how partial migratory populations are responding to ongoing environmen- tal change. Environmental change can lead to differences in the fitness of residents and migrants, which could eventually lead to changes in the frequency of the strategies in the overall population. Here, we address questions concerning the life history of the endangered Gila cypha (humpback chub) in the regulated Colorado River and the unregulated tributary and primary spawning area, the Little Colorado River. We develop eight multistate models for the population based on three movement hypotheses, in which states are defined in terms of fish size classes and river locations. We fit these models to mark–recapture data col- lected in 2009–2012. We compare survival and growth estimates between the Col- orado River and Little Colorado River and calculate abundances for all size classes. The best model supports the hypotheses that larger adults spawn more frequently than smaller adults, that there are residents in the spawning grounds, and that juveniles move out of the Little Colorado River in large numbers during the monsoon season (July–September). Monthly survival rates for G. cypha in the Colorado River are higher than in the Little Colorado River in all size classes; however, growth is slower. While the hypothetical life histories of life-long resi- dents in the Little Colorado River and partial migrants spending most of its time in the Colorado River are very different, they lead to roughly similar fitness expectations when we used expected number of spawns as a proxy. However, more research is needed because our study period covers a period of years when conditions in the Colorado River for G. cypha are likely to have been better than has been typical over the last few decades.

ContributorsYackulic, Charles B. (Author) / Yard, Michael D. (Author) / Korman, Josh (Author) / Van Haverbeke, David R. (Author)
Created2014-01-16
149111-Thumbnail Image.png
Description

ABSTRACT: The Colorado River below Glen Canyon Dam, Arizona, is part of an adaptive management programme which optimizes dam operations to improve various resources in the downstream ecosystem within Grand Canyon. Understanding how populations of federally endangered humpback chub Gila cypha respond to these dam operations is a high priority.

ABSTRACT: The Colorado River below Glen Canyon Dam, Arizona, is part of an adaptive management programme which optimizes dam operations to improve various resources in the downstream ecosystem within Grand Canyon. Understanding how populations of federally endangered humpback chub Gila cypha respond to these dam operations is a high priority. Here, we test hypotheses concerning temporal variation in juvenile humpback chub apparent survival rates and abundance by comparing estimates between hydropeaking and steady discharge regimes over a 3-year period (July 2009–July 2012). The most supported model ignored flow type (steady vs hydropeaking) and estimated a declining trend in daily apparent survival rate across years (99.90%, 99.79% and 99.67% for 2009, 2010 and 2011, respectively). Corresponding abundance of juvenile humpback chub increased temporally; open population model estimates ranged from 615 to 2802 individuals/km, and closed model estimates ranged from 94 to 1515 individuals/km. These changes in apparent survival and abundance may reflect broader trends, or simply represent inter-annual variation. Important findings include (i) juvenile humpback chub are currently surviving and recruiting in the mainstem Colorado River with increasing abundance; (ii) apparent survival does not benefit from steady fall discharges from Glen Canyon Dam; and (iii) direct assessment of demographic parameters for juvenile endangered fish are possible and can rapidly inform management actions in regulated rivers.

ContributorsFinch, Colton G. (Author) / Pine, William E. (Author) / Yackulic, Charles B. (Author) / Dodrill, Michael J. (Author) / Yard, Michael (Author) / Gerig, Brandon (Author) / Coggins, Lewis G. (Author) / Korman, Josh (Author)
Created2015-02-10
149140-Thumbnail Image.png
Description

With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of

With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

ContributorsMelis, Theodore S. (Author) / Walters, Carl (Author) / Korman, Josh (Author)
Created2015
149147-Thumbnail Image.png
Description

An Adaptive Environmental Assessment and Management workshop process was used to assist Grand Canyon scientists and managers in developing conceptual and simulation models for the Colorado ecosystem affected by Glen Canyon Dam. This model examines ecosystem variables and processes at multiple scales in space and time, ranging from feet and

An Adaptive Environmental Assessment and Management workshop process was used to assist Grand Canyon scientists and managers in developing conceptual and simulation models for the Colorado ecosystem affected by Glen Canyon Dam. This model examines ecosystem variables and processes at multiple scales in space and time, ranging from feet and hours for benthic algal response to diurnal flow changes, to reaches and decades for sediment storage and dynamics of long-lived native fish species. Its aim is to help screen policy options ranging from changes in hourly variation in flow allowed from Glen Canyon Dam, to major structural changes for restoration of more natural temperature regimes. It appears that we can make fairly accurate predictions about some components of ecosystem response to policy change (e.g., autochthonous primary production, insect communities, riparian vegetation, rainbow trout population), but we are moderately or grossly uncertain about others (e.g., long-term sediment storage, response of native and non-native fishes to physical habitat restoration). Further, we do not believe that existing monitoring programs are adequate to detect responses of native fishes or vegetation to anything short of gross habitat changes. Some experimental manipulations (such as controlled floods for beach/habitat- building) should proceed, but most should await development of better monitoring programs and sound temporal baseline information from those programs.

ContributorsWalters, Carl (Author) / Stevens, Lawrence E. (Author) / Gold, Barry (Author) / Korman, Josh (Author)
Created2000-12
149138-Thumbnail Image.png
Description

An ecological survey of the riparian zone of the Colorado River from Lees Ferry to the Grand Wash Cliffs, Arizona, was initiated between 1 June 1974 and 30 June 1976. The purposes of this study were:

First, to describe vegetational changes as a result of the controlled water release from Glen

An ecological survey of the riparian zone of the Colorado River from Lees Ferry to the Grand Wash Cliffs, Arizona, was initiated between 1 June 1974 and 30 June 1976. The purposes of this study were:

First, to describe vegetational changes as a result of the controlled water release from Glen Canyon Dam, second, preparation of a vegetation map from river level up to the 500 foot contour level, third, to describe population densities, home ranges, and demography of important vertebrates, fourth, to inventory insects of the riparian zone, fifth, to describe the distribution and impact caused by feral burros, and sixth, to describe the interrelationships of humans with the biota.

The major findings include the following: (1)The construction of Glen Canyon Dam has permitted the development of a new riparian community. This community is characterized by salt cedar, arrowweed, coyote willow, desert broom, and seep willow. (2) Botanical investigations in the riparian and adjacent habitats discerned the presence of 807 species of vascular plants representing 92 families. Also, two species, previously undescribed, Flaveria mcdougallii and Euphorbia rossii, are presented. (3) An accessment of important vertebrates and insects revealed: a) rodent communities on beaches tend to be less productive and less stable than those rodent communities of the terrace areas, b) Peromyscus eremicus appears to be the most successful small mammal in the riparian zone, c) rodent survivorship is very low and suggests a nearly annual population turnover, d) 178 species of birds utilize the riparian zone, of these 41 breed there, e) the most common bird species is the Lucy's Warbler, f) over 12,000 insect specimens in 20 orders and 247 families were collected and prepared, g) insect production on the exotic salt cedar fluctuate dramatically in comparison to insect production on dominant native plants. (4) Feral ass distribution was found to be greater than previously believed. It has been determined that the expanding feral ass populations are systematically destroying riparian and desert habitats within the study area and their immediate removal is suggested. (5) Human impact seems to be a function of visitor activities and the specific biotic sensitivity of the use area rather than a function of the total number of users. (6) In 1974, 395 different campsites were reported between Lees Ferry and Pierce's Ferry. In 1975, 350 different campsites were used. (7) Establishment and maintenance of an inner canyon trail system, the removal of all future human fecal waste material and education of river users may be the means to minimize habitat destruction rather than just setting a user-day limit.

ContributorsCarothers, Steven W. (Editor) / Aitchison, Stewart W. (Editor)
Created1976-06