This administrative history of the Grand Canyon Dam Adaptive Management Program (GCDAMP) includes government reports, oral history interviews and other relevant information about Colorado River law, environmental protection law, hydropower regulation, the Glen Canyon Environmental Studies that served as a precursor to GCDAMP, and the activities of the Adaptive Management Work Group, the Technical Work Group, and the U.S. Geological Survey’s Grand Canyon Monitoring and Research Center.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

149113-Thumbnail Image.png
Description

ABSTRACT: This study assesses the impact of Glen Canyon Dam releases on rafting (white-water boating and day-use rafters) and angling recreationists in Glen Canyon and Grand Canyon National Park using attribute and contingent valuation surveys. Several sources of information were utilized in this study: knowledgeable people (fishing quides, rafting guides,

ABSTRACT: This study assesses the impact of Glen Canyon Dam releases on rafting (white-water boating and day-use rafters) and angling recreationists in Glen Canyon and Grand Canyon National Park using attribute and contingent valuation surveys. Several sources of information were utilized in this study: knowledgeable people (fishing quides, rafting guides, resource managers, and GCES researchers), seven formal surveys (including attribute surveys), and contingent valuation survey to quantify, in dollars, the effects of dam releases on the recreational exoerience. The goal of the study was to assess the impact of alternative annual flow release patterns for Glen Canyon Dam on recreationists in the aggregate. Flow regimes combining high constant flows in the summer months with moderate or low flows during the remainder of the year would be likely to produce the largest recreational benefits. Extreme high or low flows will adversely affect all river recreation, with flows below approximately 5,000 cubic feet per second and above 35,000 cubic feet oer second to both boaters and anglers.

ContributorsBishop, Richard C. (Author) / Boyle, Kevin J. (Author) / Welsh, Michael P. (Author) / Baumgartner, Robert M. (Author) / Rathbun, Pamela R. (Author)
Created1987-01
149136-Thumbnail Image.png
Description

Sediment supplied to the Colorado River within the Grand Canyon has been sorted into distinct deposits of three grain size ranges. The major rapids are formed by boulder deposits from side-canyon tributaries. As a result of a fourfold reduction in peak discharge when Glen Canyon Dam was closed in 1963,

Sediment supplied to the Colorado River within the Grand Canyon has been sorted into distinct deposits of three grain size ranges. The major rapids are formed by boulder deposits from side-canyon tributaries. As a result of a fourfold reduction in peak discharge when Glen Canyon Dam was closed in 1963, new fan debris may increase the gradient through some of the rapids by a factor of 1.8. Cobbles and gravel, transported only during flood stages, are preferentially deposited in the wider sections of the river as bars and riffles and are, for the most part, inactive during post-dam discharges. Fine-grain (largely sandy) terraces occur throughout the canyon, especially along the banks of the large reverse eddies above and below the rapids. The lower terraces are being reworked into beach-like shores by diurnally-varying, post-dam discharges. A slight net lateral erosion of the terraces has resulted. Prior to construction of the dam, sandy bed deposits underwent scour averaging about 1 m during spring floods, balanced by deposition from tributary sources during the summer. Downstream from rapids, decreased turbulence due to lower discharges has resulted in deposition averaging 2.2 m on the bed within the upper portions of the canyon. Differences in rock types along the river determine overall channel morphology. Rocks of low resistance result in a wide valley, a meandering channel, and abundant cobble bars and sand terraces. Narrow channels with rapids and deep pools are most frequent within the sections of the canyon where Precambrian crystalline rocks dominate.

ContributorsHoward, Alan (Author) / Dolan, Robert (Author)
Created1981-05