This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 111 - 116 of 116
Filtering by

Clear all filters

Description
Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.
ContributorsDilly, Leon (Author) / Frow, Emma (Thesis director) / Vogel, Kathleen (Committee member) / Gillum, David (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05
Description
Engineering, and more specifically, electrical engineering can be a difficult topic to explain through spoken communication. Along with taking years of education to learn and understand necessary topics, the field is riddled with jargon and items that may take lectures to explain. However, this type of education may not be

Engineering, and more specifically, electrical engineering can be a difficult topic to explain through spoken communication. Along with taking years of education to learn and understand necessary topics, the field is riddled with jargon and items that may take lectures to explain. However, this type of education may not be feasible for a younger or inexperienced audience. Therefore, engineers must find new ways to explain such difficult topics, especially in an attempt to garner interest in children, for example, through art.
ContributorsHedges, Madison (Author) / Aukes, Daniel (Thesis director) / Weeks, Eric (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / School of Earth and Space Exploration (Contributor)
Created2023-12
Description
For this study, my overarching goal was to understand the possibilities of humanity’s future in space exploration. Addressing the future of space exploration not only opens doors for a multitude of discoveries but may answer questions that can be essential to our survival on Earth. This study, more specifically, aimed

For this study, my overarching goal was to understand the possibilities of humanity’s future in space exploration. Addressing the future of space exploration not only opens doors for a multitude of discoveries but may answer questions that can be essential to our survival on Earth. This study, more specifically, aimed to determine how college students at Arizona State University, engineering and astronomy students in particular, visualize the future of space exploration, as in the future, they will become the leading experts at the forefront of all space-related developments. The method through which I have conducted this study is a short survey, consisting of a variety of questions, designed to encourage students to develop their own unique interpretations of space exploration and ultimately, its imminent future. The results ultimately demonstrated that most participants in the study believed that political obstacles were the most prevalent concern in the further development of space exploration. There also appeared to be a moderate outlook on the future success and vitality of space exploration among student scientists and engineers. From a statistical standpoint, there appeared to be no alarming difference of opinion between these two ASU student groups.
ContributorsMontano, Sebastian (Author) / Voorhees, Matthew (Thesis director) / Aganaba, Timiebi (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2023-12
Description
Traditional crop production faces a significant challenge due to overapplication, mining, and decreased supply of mineral nutrients. In addition to this, the urgent need to address global food waste has become increasingly apparent, as discarded food scraps in landfills contribute to harmful greenhouse gas emissions. A promising solution that addresses

Traditional crop production faces a significant challenge due to overapplication, mining, and decreased supply of mineral nutrients. In addition to this, the urgent need to address global food waste has become increasingly apparent, as discarded food scraps in landfills contribute to harmful greenhouse gas emissions. A promising solution that addresses both of these critical challenges includes the innovative utilization of food waste anaerobic digestate as a fertilizer for crop production. This study investigated whether using anaerobically digested food waste as fertilizer can fully replace or reduce the use of chemical fertilizer in vegetable and ornamental crop production. The seeds of lettuce (Lactuca sativa) ‘Nancy’ and petunia (Petunia × hybrida) ‘Easy Wave Velour Berry’ were sown into a soilless medium and grown in the indoor vertical farm at 22℃ under sole-source lighting at a photosynthetic photon flux density of 180 µmol∙m–2∙s–1 with a 20-h photoperiod. Four weeks after sowing, seedlings were transplanted and grown for three weeks in a greenhouse with an average daily temperature of 20 °C under ambient sunlight with an average daily light integral of 22 mol∙m–2∙d–1. The plants were fertilized using tap water mixed with different fertilizers, including a chemical fertilizer (15N-2.2P-16.6K), an organic fertilizer derived from anaerobically digested food waste (0.06N-0.026P-0.1191K), or a blend containing 50% chemical fertilizer and 50% food waste-based fertilizer, at the electrical conductivity of 0.7 mS·cm-1 during the young plant stage and 2.1 mS·cm-1 after transplant. At the young plant stage, lettuce and petunia have similar growth characteristics, including leaf number, SPAD index, and shoot and root fresh mass, when treated with either chemical or chemical + food waste fertilizer. In contrast, in both species, leaf area was 93-152% larger and fresh mass was 82-141% greater in plants treated with chemical or chemical + food waste fertilizer compared to food waste fertilizer. At the finishing stage, lettuce and petunia also showed similar growth and flowering characteristics under chemical or chemical + food waste fertilizer. However, in the lettuce finishing plants, fresh mass was 127-199% larger when supplied with chemical or chemical + food waste fertilizer compared to food waste fertilizer. In petunia, the number of flowers was 123-190% greater in chemical and chemical + food waste fertilizer compared to food waste fertilizer. In both lettuce and petunia at the finishing stage, the SPAD index, leaf number, root fresh mass, and root dry mass were similar among all treatments. These results suggest that food waste fertilizer applied as the sole source of plant nutrition is insufficient in comparison to chemical fertilizer at the same electrical conductivity. However, partially substituting some food waste fertilizer for chemical fertilizer reaps similar plant yield to chemical fertilizer on its own.
ContributorsGoode, Jasmine (Author) / Park, Yujin (Thesis director) / Chen, Zhihao (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2023-12
165588-Thumbnail Image.png
Description

This project was an exploratory take on outreach in the life sciences - looking into the existing literature and practices and formulating a proof of concept for future outreach with synthesizes my findings. The research culminated in the creation of an insect guide for the novice observer, which reads as

This project was an exploratory take on outreach in the life sciences - looking into the existing literature and practices and formulating a proof of concept for future outreach with synthesizes my findings. The research culminated in the creation of an insect guide for the novice observer, which reads as a modern take on the dichotomous key and allows amateur insect observers to develop some skills of identification with relatively little entomological knowledge.

ContributorsHaddad, Mary (Author) / Polidoro, Beth (Thesis director) / Yule, Kelsey (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05
Description

Beautiful and rich in history, the Arabic language is spoken by over 422 million people. The language has significant social and political importance, and it is increasingly taught in universities around the United States. When languages are taught their aim should be not only to teach learners to communicate effectively,

Beautiful and rich in history, the Arabic language is spoken by over 422 million people. The language has significant social and political importance, and it is increasingly taught in universities around the United States. When languages are taught their aim should be not only to teach learners to communicate effectively, but also to gain a deep understanding and respect of culture, people, and history. The Al-Kitaab textbook series by Georgetown University Press is utilized as the main learning material in most universities in the United States to teach Arabic language. The highly political and negative nature of the series limits students’ comprehension to a political perspective influenced by the conflicts in the Middle East and has a severe impact on not only students’ learning ability but also their perception of the Arabic language and culture. While the series sufficiently provides the political vocabulary necessary for roles in government, it overlooks the importance of a full understanding of the cultural richness and nuances of the Arabic language necessary for an appreciation of history, arts, and literature of the region. The overarching objective of this project is to analyze the Georgetown University Press Al-Kitaab textbook series for Arabic language instruction and compare it to the Vista Higher Learning Sentieri textbook for Italian language instruction to plan a new Arabic curriculum to increase student enrollment. This comparison will explore recurring themes present in each textbook series and display the detrimental and outdated depictions of Arab culture presented throughout the Al-Kitaab series. Different aspects of the textbooks will be discussed including vocabulary and vocabulary progression, biographies of important figures, in-text activities, reading passages, and recurrent themes. Through revamping the learning materials used to teach Arabic, Arizona State University (ASU) and the School of International Letters and Cultures (SILC) can become innovative leaders in the instruction of university-level Arabic language.

ContributorsMouti, Xeynab (Author) / Risha, Sarah (Thesis director) / Dell'Anna, Antonella (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor)
Created2023-05