This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 710
Filtering by

Clear all filters

150019-Thumbnail Image.png
Description
Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java

Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java code that runs within a JVM to interoperate with applications or libraries that are written in other languages and compiled to the host CPU ISA. JNI plays an important role in embedded system as it provides a mechanism to interact with libraries specific to the platform. This thesis addresses the overhead incurred in the JNI due to reflection and serialization when objects are accessed on android based mobile devices. It provides techniques to reduce this overhead. It also provides an API to access objects through its reference through pinning its memory location. The Android emulator was used to evaluate the performance of these techniques and we observed that there was 5 - 10 % performance gain in the new Java Native Interface.
ContributorsChandrian, Preetham (Author) / Lee, Yann-Hang (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
149977-Thumbnail Image.png
Description
Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from

Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from video data by decomposing various key contributing factors, such as pose, view angle, and body shape, in the generation of the image observations. Experimental results have shown that the resulting pose features extracted using the proposed methods exhibit excellent invariance properties to changes in view angles and body shapes. Furthermore, using the proposed invariant multifactor pose features, a suite of simple while effective algorithms have been developed to solve the movement recognition and pose estimation problems. Using these proposed algorithms, excellent human movement analysis results have been obtained, and most of them are superior to those obtained from state-of-the-art algorithms on the same testing datasets. Moreover, a number of key movement analysis challenges, including robust online gesture spotting and multi-camera gesture recognition, have also been addressed in this research. To this end, an online gesture spotting framework has been developed to automatically detect and learn non-gesture movement patterns to improve gesture localization and recognition from continuous data streams using a hidden Markov network. In addition, the optimal data fusion scheme has been investigated for multicamera gesture recognition, and the decision-level camera fusion scheme using the product rule has been found to be optimal for gesture recognition using multiple uncalibrated cameras. Furthermore, the challenge of optimal camera selection in multi-camera gesture recognition has also been tackled. A measure to quantify the complementary strength across cameras has been proposed. Experimental results obtained from a real-life gesture recognition dataset have shown that the optimal camera combinations identified according to the proposed complementary measure always lead to the best gesture recognition results.
ContributorsPeng, Bo (Author) / Qian, Gang (Thesis advisor) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149991-Thumbnail Image.png
Description
With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications

With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications of compressive sensing and sparse representation with regards to image enhancement, restoration and classication. The first application deals with image Super-Resolution through compressive sensing based sparse representation. A novel framework is developed for understanding and analyzing some of the implications of compressive sensing in reconstruction and recovery of an image through raw-sampled and trained dictionaries. Properties of the projection operator and the dictionary are examined and the corresponding results presented. In the second application a novel technique for representing image classes uniquely in a high-dimensional space for image classification is presented. In this method, design and implementation strategy of the image classification system through unique affine sparse codes is presented, which leads to state of the art results. This further leads to analysis of some of the properties attributed to these unique sparse codes. In addition to obtaining these codes, a strong classier is designed and implemented to boost the results obtained. Evaluation with publicly available datasets shows that the proposed method outperforms other state of the art results in image classication. The final part of the thesis deals with image denoising with a novel approach towards obtaining high quality denoised image patches using only a single image. A new technique is proposed to obtain highly correlated image patches through sparse representation, which are then subjected to matrix completion to obtain high quality image patches. Experiments suggest that there may exist a structure within a noisy image which can be exploited for denoising through a low-rank constraint.
ContributorsKulkarni, Naveen (Author) / Li, Baoxin (Thesis advisor) / Ye, Jieping (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150362-Thumbnail Image.png
Description
There are many wireless communication and networking applications that require high transmission rates and reliability with only limited resources in terms of bandwidth, power, hardware complexity etc.. Real-time video streaming, gaming and social networking are a few such examples. Over the years many problems have been addressed towards the goal

There are many wireless communication and networking applications that require high transmission rates and reliability with only limited resources in terms of bandwidth, power, hardware complexity etc.. Real-time video streaming, gaming and social networking are a few such examples. Over the years many problems have been addressed towards the goal of enabling such applications; however, significant challenges still remain, particularly, in the context of multi-user communications. With the motivation of addressing some of these challenges, the main focus of this dissertation is the design and analysis of capacity approaching coding schemes for several (wireless) multi-user communication scenarios. Specifically, three main themes are studied: superposition coding over broadcast channels, practical coding for binary-input binary-output broadcast channels, and signalling schemes for two-way relay channels. As the first contribution, we propose an analytical tool that allows for reliable comparison of different practical codes and decoding strategies over degraded broadcast channels, even for very low error rates for which simulations are impractical. The second contribution deals with binary-input binary-output degraded broadcast channels, for which an optimal encoding scheme that achieves the capacity boundary is found, and a practical coding scheme is given by concatenation of an outer low density parity check code and an inner (non-linear) mapper that induces desired distribution of "one" in a codeword. The third contribution considers two-way relay channels where the information exchange between two nodes takes place in two transmission phases using a coding scheme called physical-layer network coding. At the relay, a near optimal decoding strategy is derived using a list decoding algorithm, and an approximation is obtained by a joint decoding approach. For the latter scheme, an analytical approximation of the word error rate based on a union bounding technique is computed under the assumption that linear codes are employed at the two nodes exchanging data. Further, when the wireless channel is frequency selective, two decoding strategies at the relay are developed, namely, a near optimal decoding scheme implemented using list decoding, and a reduced complexity detection/decoding scheme utilizing a linear minimum mean squared error based detector followed by a network coded sequence decoder.
ContributorsBhat, Uttam (Author) / Duman, Tolga M. (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Li, Baoxin (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2011
148104-Thumbnail Image.png
Description

Reducing the amount of error and introduced data variability increases the accuracy of Western blot results. In this study, different methods of normalization for loading differences and data alignment were explored with respect to their impact on Western blot results. GAPDH was compared to the LI-COR Revert total protein stain

Reducing the amount of error and introduced data variability increases the accuracy of Western blot results. In this study, different methods of normalization for loading differences and data alignment were explored with respect to their impact on Western blot results. GAPDH was compared to the LI-COR Revert total protein stain as a loading control. The impact of normalizing data to a control condition, which is commonly done to align Western blot data distributed over several immunoblots, was also investigated. Specifically, this study addressed whether normalization to a small subset of distinct controls on each immunoblot increases pooled data variability compared to a larger set of controls. Protein expression data for NOX-2 and SOD-2 from a study investigating the protective role of the bradykinin type 1 receptor in angiotensin-II induced left ventricle remodeling were used to address these questions but are also discussed in the context of the original study. The comparison of GAPDH and Revert total protein stain as a loading control was done by assessing their correlation and comparing how they affected protein expression results. Additionally, the impact of treatment on GAPDH was investigated. To assess how normalization to different combinations of controls influences data variability, protein data were normalized to the average of 5 controls, the average of 2 controls, or an average vehicle and the results by treatment were compared. The results of this study demonstrated that GAPDH expression is not affected by angiotensin-II or bradykinin type 1 receptor antagonist R-954 and is a less sensitive loading control compared to Revert total protein stain. Normalization to the average of 5 controls tended to reduce pooled data variability compared to 2 controls. Lastly, the results of this study provided preliminary evidence that R-954 does not alter the expression of NOX-2 or SOD-2 to an expression profile that would be expected to explain the protection it confers against Ang-II induced left ventricle remodeling.

ContributorsSiegel, Matthew Marat (Author) / Jeremy, Mills (Thesis director) / Sweazea, Karen (Committee member) / Hale, Taben (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148110-Thumbnail Image.png
Description

This thesis identifies and explains two main problems students face during their internships. The first problem relates to feeling bored at internships due to the simplicity of projects or lack of work. From the interviews conducted, several strategies to avoid this boredom were created, including having employers design education plans

This thesis identifies and explains two main problems students face during their internships. The first problem relates to feeling bored at internships due to the simplicity of projects or lack of work. From the interviews conducted, several strategies to avoid this boredom were created, including having employers design education plans for interns to further their knowledge in programs such as excel during their downtime. The second problem with internships discovered focuses on the gap between what is taught in schools versus what is expected of interns in practice. This thesis identifies several opportunities for improvement in education and strategies on how to handle feeling overwhelmed on intern projects due to lack of knowledge.

ContributorsKomarnyckyj, Katya (Author) / Byrne, Jared (Thesis director) / Crawford, Cassidy (Committee member) / School of Molecular Sciences (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148130-Thumbnail Image.png
Description

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between these groups. Each fiber type is characterized by unique metabolic and contractile properties, which are largely determined by the myosin heavy chain isoform (MHC) or isoform combination that the fiber expresses. In previous studies, SDS-PAGE single fiber analysis has been utilized as a method to determine MHC isoform distribution and single fiber type distribution in skeletal muscle. Herein, a methodological approach to analyze MHC isoform and fiber type distribution in skeletal muscle was fine-tuned for use in human and rodent studies. In the future, this revised methodology will be implemented to evaluate the effects of obesity and exercise on the phenotypic fiber type composition of skeletal muscle.

ContributorsOhr, Jalonna Rose (Author) / Katsanos, Christos (Thesis director) / Tucker, Derek (Committee member) / Serrano, Nathan (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147836-Thumbnail Image.png
Description

Since 1975, the prevalence of obesity has nearly tripled around the world. In 2016, 39% of adults, or 1.9 billion people, were considered overweight, and 13% of adults, or 650 million people, were considered obese. Furthermore, Cardiovascular disease remains to be the leading cause of death for adults in the

Since 1975, the prevalence of obesity has nearly tripled around the world. In 2016, 39% of adults, or 1.9 billion people, were considered overweight, and 13% of adults, or 650 million people, were considered obese. Furthermore, Cardiovascular disease remains to be the leading cause of death for adults in the United States, with 655,000 people dying from related conditions and consequences each year. Including fiber in one’s dietary regimen has been shown to greatly improve health outcomes in regards to these two areas of health. However, not much literature is available on the effects of corn-based fiber, especially detailing the individual components of the grain itself. The purpose of this preliminary study was to test the differences in influence on both LDL-cholesterol and triglycerides between treatments based on whole-grain corn flour, refined corn flour, and 50% refined corn flour + 50% corn bran derived from whole grain cornmeal (excellent fiber) in healthy overweight (BMI ≥ 25.0 kg/m2) adults (ages 18 - 70) with high LDL cholesterol (LDL ≥ 120mg/dL). 20 participants, ages 18 - 64 (10 males, 10 females) were involved. Data was derived from blood draws taken before and after each of the three treatments as well as before and after each treatment’s wash out periods. A general linear model was used to assess the effect of corn products on circulating concentrations of LDL-cholesterol and triglycerides. From the model, it was found that the whole-grain corn flour and the 50% refined corn flour + 50% corn bran drive from whole grain cornmeal treatments produced a higher, similar benefit in reductions in LDL-cholesterol. However, the whole grain flour, refined flour, and bran-based fiber treatments did not influence the triglyceride levels of the participants throughout this study. Further research is needed to elucidate the effects of these fiber items on cardiometabolic disease markers in the long-term as well as with a larger sample size.

ContributorsLe, Justin (Author) / Whisner, Corrie (Thesis director) / Ortega Santos, Carmen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147842-Thumbnail Image.png
Description

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer the question of whether a similar interaction leads to savings, a model-free process that is described as faster relearning when experiencing something familiar. This was tested in a two-week reaching task conducted on a robotic arm capable of perturbing movements. The task was designed so that the two sessions differed in their history of errors. By measuring the change in the learning rate, the savings was determined at various points. The results showed that the history of errors successfully modulated savings. Thus, this supports the notion that the two complementary systems interact to develop savings. Additionally, this report was part of a larger study that will explore the organizational structure of the complementary systems as well as the neural basis of this motor learning.

ContributorsRuta, Michael (Author) / Santello, Marco (Thesis director) / Blais, Chris (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147857-Thumbnail Image.png
Description

Mutations in the DNA of somatic cells, resulting from inaccuracies in DNA<br/>replication or exposure to harsh conditions (ionizing radiation, carcinogens), may be<br/>loss-of-function mutations, and the compounding of these mutations can lead to cancer.<br/>Such mutations can come in the form of thymine dimers, N-𝛽 glycosyl bond hydrolysis,<br/>oxidation by hydrogen peroxide or

Mutations in the DNA of somatic cells, resulting from inaccuracies in DNA<br/>replication or exposure to harsh conditions (ionizing radiation, carcinogens), may be<br/>loss-of-function mutations, and the compounding of these mutations can lead to cancer.<br/>Such mutations can come in the form of thymine dimers, N-𝛽 glycosyl bond hydrolysis,<br/>oxidation by hydrogen peroxide or other radicals, and deamination of cytosine to uracil.<br/>However, many cells possess the machinery to counteract the deleterious effects of<br/>such mutations. While eukaryotic DNA repair enzymes decrease the incidence of<br/>mutations from 1 mistake per 10^7 nucleotides to 1 mistake per 10^9 nucleotides, these<br/>mutations, however sparse, are problematic. Of particular interest is a mutation in which<br/>uracil is incorporated into DNA, either by spontaneous deamination of cysteine or<br/>misincorporation. Such mutations occur about one in every 107 cytidine residues in 24<br/>hours. DNA uracil glycosylase (UDG) recognizes these mutations and cleaves the<br/>glycosidic bond, creating an abasic site. However, the rate of this form of DNA repair<br/>varies, depending on the nucleotides that surround the uracil. Most enzyme-DNA<br/>interactions depend on the sequence of DNA (which may change the duplex twist),<br/>even if they only bind to the sugar-phosphate backbone. In the mechanism of uracil<br/>excision, UDG flips the uracil out of the DNA double helix, and this step may be<br/>impaired by base pairs that neighbor the uracil. The deformability of certain regions of<br/>DNA may facilitate this step in the mechanism, causing these regions to be less<br/>mutable. In DNA, base stacking, a form of van der Waals forces between the aromatic<br/>nucleic bases, may make these uracil inclusions more difficult to excise. These regions,<br/>stabilized by base stacking interactions, may be less susceptible to repair by<br/>glycosylases such as UDG, and thus, more prone to mutation.

ContributorsUgaz, Bryan T (Author) / Levitus, Marcia (Thesis director) / Van Horn, Wade (Committee member) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05