This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 312
Filtering by

Clear all filters

150044-Thumbnail Image.png
Description
The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays

The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays in category definition was explained. It was hypothesized that the effects of partial experience are not explained by a shifting of attention between dimensions (Taylor & Ross, 2009) but rather by an increased reliance on prototypical values used to fill in missing information during incomplete experiences. Results indicated that participants (1) do not fill in missing information with prototypical values, (2) integrate information less efficiently between different modalities than within a single modality, and (3) have difficulty learning only when partial experience prevents access to diagnostic information.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Mcbeath, Micheal (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2011
149644-Thumbnail Image.png
Description
Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the

Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the present study investigated several factors that affect implicit learning and the development of intuitive decision making in a simulated real-world environment: (1) simple versus complex situational patterns; (2) the diversity of the patterns to which an individual is exposed; (3) the underlying mechanisms. The results showed that simple patterns led to higher levels of implicit learning and intuitive decision-making accuracy than complex patterns; increased diversity enhanced implicit learning and intuitive decision-making accuracy; and an embodied mechanism, labeling, contributes to the development of intuitive decision making in a simulated real-world environment. The results suggest that simulated real-world environments can provide the basis for training intuitive decision making, that diversity is influential in the process of training intuitive decision making, and that labeling contributes to the development of intuitive decision making. These results are interpreted in the context of applied situations such as military applications involving remotely piloted aircraft.
ContributorsCovas-Smith, Christine Marie (Author) / Cooke, Nancy J. (Thesis advisor) / Patterson, Robert (Committee member) / Glenberg, Arthur (Committee member) / Homa, Donald (Committee member) / Arizona State University (Publisher)
Created2011
147842-Thumbnail Image.png
Description

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer the question of whether a similar interaction leads to savings, a model-free process that is described as faster relearning when experiencing something familiar. This was tested in a two-week reaching task conducted on a robotic arm capable of perturbing movements. The task was designed so that the two sessions differed in their history of errors. By measuring the change in the learning rate, the savings was determined at various points. The results showed that the history of errors successfully modulated savings. Thus, this supports the notion that the two complementary systems interact to develop savings. Additionally, this report was part of a larger study that will explore the organizational structure of the complementary systems as well as the neural basis of this motor learning.

ContributorsRuta, Michael (Author) / Santello, Marco (Thesis director) / Blais, Chris (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used to create an aesthetic design on this cover. The Amputee Coalition helped to recruit participants through its website and social media platforms. Finally, multiple methods of creating a design were developed to increase the amount of customization that a user could have for their cover.

ContributorsRiley, Nicholas (Co-author) / Fusaro, Gerard (Co-author) / Sugar, Thomas (Thesis director) / Redkar, Sangram (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used to create an aesthetic design on this cover. The Amputee Coalition helped to recruit participants through its website and social media platforms. Finally, multiple methods of creating a design were developed to increase the amount of customization that a user could have for their cover.

ContributorsFusaro, Gerard Anthony (Co-author) / Riley, Nicholas (Co-author) / Sugar, Thomas (Thesis director) / Redkar, Sangram (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147973-Thumbnail Image.png
Description

Due to the vast increase in processing power and energy usage in computing, a need for greater heat dissipation is prevalent. With numerous applications demanding cheaper and more efficient options for thermal management, new technology must be employed. Through the use of additive manufacturing, designs and structures can be created

Due to the vast increase in processing power and energy usage in computing, a need for greater heat dissipation is prevalent. With numerous applications demanding cheaper and more efficient options for thermal management, new technology must be employed. Through the use of additive manufacturing, designs and structures can be created that were not physically possible before without extensive costs. The goal is to design a system that utilizes capillary action, which is the ability for liquids to flow through narrow spaces unassisted. The level of detail required may be achieved with direct metal laser sintering (DMLS) and stereolithography (SLA) 3D printing.

ContributorsFechter, Andrew (Author) / Bhate, Dhruv (Thesis director) / Frank, Daniel (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147989-Thumbnail Image.png
Description

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it is now time to extend off from this framework. With this Honors Thesis project, we introduce a new function intended to eventually become common to drones. This feature is a grasping mechanism that is capable of perching on branches and carrying loads within the weight limit. This concept stems from the natural behavior of many kinds of insects. It paves the way for drones to further imitate the natural design of flying creatures. Additionally, it serves to advocate for dynamic drone frames, or morphing drone frames, to become more common practice in drone designs.

ContributorsMacias, Jose Carlos (Co-author) / Goldenberg, Edward Bradley (Co-author) / Downey, Matthew (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel (Committee member) / Human Systems Engineering (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147792-Thumbnail Image.png
Description

Mathematical and analytical approach at the floor and diffuser of a Formula 1 vehicle and how they produce downforce. Reaches a conclusion about how engineers and aerodynamicists creates the desired effects underneath the vehicle to produce substantial downforce.

ContributorsMarcantonio, Nicholas Joseph (Author) / Rajadas, John (Thesis director) / Hillery, Scott (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The NCAA is changing the current rules and regulations around a student-athlete’s name, image, and likeness. Previously, student-athletes were not allowed to participate in business activities or noninstitutional promotional activities. With the new rule changes, student-athletes will be able to engage in business activities related to their own name, image,

The NCAA is changing the current rules and regulations around a student-athlete’s name, image, and likeness. Previously, student-athletes were not allowed to participate in business activities or noninstitutional promotional activities. With the new rule changes, student-athletes will be able to engage in business activities related to their own name, image, and likeness. The goal of the team was to help “prepare athletes to understand and properly navigate the evolving restrictions and guidelines around athlete name, image, and likeness”. In order to accomplish this, the team had to understand the problems student-athletes face with these changing rules and regulations. The team conducted basic market research to identify the problem. The problem discovered was the lack of communication between student-athletes and businesses. In order to verify this problem, the team conducted several interviews with Arizona State University Athletic Department personnel. From the interviews, the team identified that the user is the student-athletes and the buyer is the brands and businesses. Once the problem was verified and the user and buyer were identified, a solution that would best fit the customers was formulated. The solution is a platform that assists student-athletes navigate the changing rules of the NCAA by providing access to a marketplace optimized to working with student-athletes and offering an ease of maintaining relationships between student-athletes and businesses. The solution was validated through meetings with interested brands. The team used the business model and market potential to pitch the business idea to the brands. Finally, the team gained traction by initiating company partnerships.

ContributorsRecato, Bella Sebastian (Co-author) / Schulte, Brooke (Co-author) / Winston, Blake (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Kunowski, Jeffrey (Committee member) / Engineering Programs (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The purpose of this creative project was to create a stereo sound system in a unique medium. As a team, we decided to integrate a Tesla Coil with a bluetooth audio source. These high frequency, high voltage systems can be configured to emit their electrical discharge in a manner that

The purpose of this creative project was to create a stereo sound system in a unique medium. As a team, we decided to integrate a Tesla Coil with a bluetooth audio source. These high frequency, high voltage systems can be configured to emit their electrical discharge in a manner that resembles playing tunes. Originally the idea was to split the audio into left and right, then to further segregate the signals to have a treble, mid, and base emitter for each side. Due to time, budget, and scope constraints, we decided to complete the project with only two coils.<br/><br/>For this project, the team decided to use a solid-state coil kit. This kit was purchased from OneTelsa and would help ensure everyone’s safety and the project’s success. The team developed our own interrupting or driving circuit through reverse-engineering the interrupter provided by oneTesla and discussing with other engineers. The custom interpreter was controlled by the PSoC5 LP and communicated with an audio source through the DFRobot Bluetooth module. Utilizing the left and right audio signals it can drive the two Tesla Coils in stereo to play the music.

ContributorsPinkowski, Olivia N (Co-author) / Hutcherson, Cree (Co-author) / Jordan, Shawn (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor, Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05