This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 405
Filtering by

Clear all filters

147834-Thumbnail Image.png
Description

From exploring coffee plantations with an old Irishman in the mountains of Colombia to watching the sun set over the Strait of Gibraltar from the terrace of an ancient Moroccan cafe, this thesis sent Charles and Zane on an elaborate cafe-crawl across ten countries, with stops at a few of

From exploring coffee plantations with an old Irishman in the mountains of Colombia to watching the sun set over the Strait of Gibraltar from the terrace of an ancient Moroccan cafe, this thesis sent Charles and Zane on an elaborate cafe-crawl across ten countries, with stops at a few of the world’s most interesting coffee houses. Some of these cafes, such as the world-renowned Caffé Florian (opened in 1720) and Caffé Greco (1760), are built on long-standing traditions. Others are led by innovators championing high-quality boutique shops, challenging mass production chains such as Starbucks and Tim Hortons. These newer cafes fuel a movement classified as the “Third Wave”. With a foundation gained from specialized courses with Patrick O’Malley, North America’s leading voice in coffee, Zane and Charles conducted first-hand research into the unique coffee preferences of multiple cultures, the emergence and impact of the Third Wave in these countries, and what the future may hold for coffee lovers.

ContributorsFerguson, Charles William (Co-author) / Jarecke, Zane (Co-author) / Eaton, John (Thesis director) / Bonfiglio, Thomas (Committee member) / Dean, W.P. Carey School of Business (Contributor, Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147835-Thumbnail Image.png
Description

From exploring coffee plantations with an old Irishman in the mountains of Colombia to watching the sun set over the Strait of Gibraltar from the terrace of an ancient Moroccan cafe, this thesis sent Charles and Zane on an elaborate cafe-crawl across ten countries, with stops at a few of

From exploring coffee plantations with an old Irishman in the mountains of Colombia to watching the sun set over the Strait of Gibraltar from the terrace of an ancient Moroccan cafe, this thesis sent Charles and Zane on an elaborate cafe-crawl across ten countries, with stops at a few of the world’s most interesting coffee houses. Some of these cafes, such as the world-renowned Caffé Florian (opened in 1720) and Caffé Greco (1760), are built on long-standing traditions. Others are led by innovators championing high-quality boutique shops, challenging mass production chains such as Starbucks and Tim Hortons. These newer cafes fuel a movement classified as the “Third Wave”. With a foundation gained from specialized courses with Patrick O’Malley, North America’s leading voice in coffee, Zane and Charles conducted first-hand research into the unique coffee preferences of multiple cultures, the emergence and impact of the Third Wave in these countries, and what the future may hold for coffee lovers.

ContributorsJarecke, Zane Micheal (Co-author) / Ferguson, Charles (Co-author) / Eaton, John (Thesis director) / Bonfiglio, Thomas (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148027-Thumbnail Image.png
Description

Papago Park in Tempe, Arizona (USA) is host to several buttes composed of landslide breccias. The focus of this thesis is a butte called “Contact Hill,” which is composed of metarhyolitic debris flows, granitic debris flows, and Barnes Butte Breccia. The Barnes Butte Breccia can be broken down into several

Papago Park in Tempe, Arizona (USA) is host to several buttes composed of landslide breccias. The focus of this thesis is a butte called “Contact Hill,” which is composed of metarhyolitic debris flows, granitic debris flows, and Barnes Butte Breccia. The Barnes Butte Breccia can be broken down into several different compositional categories that can be dated based on their relative ages. The depositional timeline of these rocks is explored through their mineral and physical properties. The rhyolitic debris flow is massively bedded and dips at 26° to the southeast. The granitic debris flow is not bedded and exhibits a mixture of granite clasts of different grain sizes. In thin section analysis, five mineral types were identified: opaque inclusions, white quartz, anhedral and subhedral biotite, yellow stained K-feldspar, and gray plagioclase. It is hypothesized that regional stretching and compression of the crust, accompanied with magmatism, helped bring the metarhyolite and granite to the surface. Domino-like fault blocks caused large brecciation, and collapse of a nearby quartzite and granite mountain helped create the Barnes Butte Breccia: a combination of quartzite, metarhyolite, and granite clasts. Evidence of Papago Park’s ancient terrestrial history is seen in metarhyolite clasts containing sand grains. These geologic events, in addition to erosion, are responsible for Papago Park’s unique appearance today.

ContributorsScheller, Jessica Rose (Author) / Reynolds, Stephen (Thesis director) / Johnson, Julia (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147988-Thumbnail Image.png
Description

Stardust grains can provide useful information about the Solar System environment before the Sun was born. Stardust grains show distinct isotopic compositions that indicate their origins, like the atmospheres of red giant stars, asymptotic giant branch stars, and supernovae (e.g., Bose et al. 2010). It has been argued that some

Stardust grains can provide useful information about the Solar System environment before the Sun was born. Stardust grains show distinct isotopic compositions that indicate their origins, like the atmospheres of red giant stars, asymptotic giant branch stars, and supernovae (e.g., Bose et al. 2010). It has been argued that some stardust grains likely condensed in classical nova outbursts (e.g., Amari et al. 2001). These nova candidate grains contain 13C, 15N and 17O-rich nuclides which are produced by proton burning. However, these nuclides alone cannot constrain the stellar source of nova candidate grains. Nova ejecta is rich in 7Be that decays to 7Li (which has a half-life of ~53 days). I want to measure 6,7Li isotopes in nova candidate grains using the NanoSIMS 50L (nanoscale secondary ion mass spectrometry) to establish their nova origins without ambiguity. Several stardust grains that are nova candidate grains were identified in meteorite Acfer 094 on the basis of their oxygen isotopes. The identified silicate and oxide stardust grains are <500 nm in size and exist in the meteorite surrounded by meteoritic silicates. Therefore, 6,7Li isotopic measurements on these grains are hindered because of the large 300-500 nm oxygen ion beam in the NanoSIMS. I devised a methodology to isolate stardust grains by performing Focused Ion Beam milling with the FIB – Nova 200 NanoLab (FEI) instrument. We proved that the current FIB instrument cannot be used to prepare stardust grains smaller than 1 𝜇m due to lacking capabilities of the FIB. For future analyses, we could either use the same milling technique with the new and improved FIB – Helios 5 UX or use the recently constructed duoplasmatron on the NanoSIMS that can achieve a size of ~75 nm oxygen ion beam.

ContributorsDuncan, Ethan Jay (Author) / Bose, Miatrayee (Thesis director) / Starrfield, Sumner (Committee member) / Desch, Steve (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

In the early years of the National Football League, scouting and roster development resembled the wild west. Drafts were held in hotel ballrooms the day after the last game of regular season college football was played. There was no combine, limited scouting, and no salary cap. Over time, these aspects

In the early years of the National Football League, scouting and roster development resembled the wild west. Drafts were held in hotel ballrooms the day after the last game of regular season college football was played. There was no combine, limited scouting, and no salary cap. Over time, these aspects have changed dramatically, in part due to key figures from Pete Rozelle to Gil Brandt to Bill Belichick. The development and learning from this time period have laid the foundational infrastructure that modern roster construction is based upon. In this modern day, managing a team and putting together a roster involves numerous people, intense scouting, layers of technology, and, critically, the management of the salary cap. Since it was first put into place in 1994, managing the cap has become an essential element of building and sustaining a successful team. The New England Patriots’ mastery of the cap is a large part of what enabled their dynastic run over the past twenty years. While their model has undoubtedly proven to be successful, an opposing model has become increasingly popular and yielded results of its own. Both models center around different distributions of the salary cap, starting with the portion paid to the starting quarterback. The Patriots dynasty was, in part, made possible due to their use of both models over the course of their dominance. Drafting, organizational culture, and coaching are all among the numerous critical factors in determining a team’s success and it becomes difficult to pinpoint the true source of success for any given team. Ultimately, however, effective management of the cap proves to be a force multiplier; it does not guarantee that a team will be successful, but it helps teams that handle the other variables well sustain their success.

ContributorsBolger, William (Author) / Eaton, John (Thesis director) / Mokwa, Michael (Committee member) / Department of Marketing (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147816-Thumbnail Image.png
Description

Especially during the current COVID-19 pandemic and age of social unrest in the United States, there has been an increasing need for comfort, yet the idea of comfort is quite vague and rarely elaborated upon. To simplify the idea of comfort and communicate the ideas around it effectively, I am

Especially during the current COVID-19 pandemic and age of social unrest in the United States, there has been an increasing need for comfort, yet the idea of comfort is quite vague and rarely elaborated upon. To simplify the idea of comfort and communicate the ideas around it effectively, I am defining comfort as a subset of escapism in which a person escapes to reduce or alleviate feelings of grief or distress. As companies rush to comfort their customers in this current state of uncertainty, marketers are pressed to identify people’s insecurities and comfort them without coming off as insensitive or trite. Current comfort marketing focuses on inspiring nostalgia in its customers, having them recall previous positive experiences or feelings to comfort them. Nostalgic marketing techniques may ease mild grief in some cases, but using them to alleviate severe distress probably will not be as effective, and has contributed to several seemingly out-of-touch “COVID-19 era” commercials.<br/>When addressing comfort, marketers should understand the type and hierarchy of comfort that they are catering to. Not all comforts are equal, in that some comforts make us feel better than others and some do not comfort us at all. A better understanding of how and why comforts change among different individuals, and possibly being able to predict the comfort preference based on a product or service, will help marketers market their goods and services more effectively. By diversifying and specializing comfort marketing using this hierarchical method, marketers will be able to more significantly reach their customers during “uncertain times.”

ContributorsTarpley, Rachel Michelle (Author) / Eaton, John (Thesis director) / Mokwa, Michael (Committee member) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147826-Thumbnail Image.png
Description

The purpose of this paper is to raise awareness about the problem nonrevenue sports face today by analyzing the key factors of the failing Division 1 model and providing some unforeseen consequences in the elimination of nonrevenue sports. The first section will explore the elimination and financial trends of NCAA

The purpose of this paper is to raise awareness about the problem nonrevenue sports face today by analyzing the key factors of the failing Division 1 model and providing some unforeseen consequences in the elimination of nonrevenue sports. The first section will explore the elimination and financial trends of NCAA Division 1 in a historical and contemporary context. The second section will provide the deep-rooted problems associated with collegiate sports. Lastly, the third section will analyze unforeseen consequences for athletic departments that should be accounted for when contemplating the elimination of a nonrevenue program.

ContributorsBelshay, Cade Michael (Author) / Eaton, John (Thesis director) / Mowka, Michael (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148089-Thumbnail Image.png
Description

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has been a point of interest since at least the 1960’s (Raymahashay, 1968). Two springs, one basic (~pH 7) and one acidic (~pH 3) mix together down an outflow channel. There are visual bands of different photosynthetic pigments which suggests the creation of temperature and chemical gradients due to the fluids mixing. In this study, to determine if fluid mixing is driving these changes of temperature and chemistry in the system, a model that factors in evaporation and cooling was developed and compared to measured temperature and chemical data collected downstream. Comparison of the modeled temperature and chemistry to the measured values at the downstream mixture shows that many of the ions, such as Cl⁻, F⁻, and Li⁺, behave conservatively with respect to mixing. This indicates that the influence of mixing accounts for a large proportion of variation in the chemical composition of the system. However, there are some chemical constituents like CH₄, H₂, and NO₃⁻, that were not conserved, and the concentrations were either depleted or increased in the downstream mixture. Some of these constituents are known to be used by microorganisms. The development of this mixing model can be used as a tool for predicting biological activity as well as building the framework for future geochemical and computational models that can be used to understand the energy availability and the microbial communities that are present.

ContributorsOrrill, Brianna Isabel (Author) / Shock, Everett (Thesis director) / Howells, Alta (Committee member) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147894-Thumbnail Image.png
Description

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum paradigm is upheld through analysis and the subsequent Aspect experiments in the years 1980-1982. No matter the complexity, any local hidden variable theory is incompatible with the formulation of standard quantum mechanics. A number of strikingly ambiguous and abstract concepts are addressed in this pursuit to deduce quantum's validity, including separability and reality. `Elements of reality' characteristic of unique spaces are defined using basis terminology and logic from EPR. The discussion draws directly from Bell's succinct 1964 Physics 1 paper as well as numerous other useful sources. The fundamental principle and insight gleaned is that quantum physics is indeed nonlocal; the door into its metaphysical and philosophical implications has long since been opened. Yet the nexus of information pertaining to Bell's inequality and EPR logic does nothing but assert the impeccable success of quantum physics' ability to describe nature.

ContributorsRapp, Sean R (Author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148230-Thumbnail Image.png
Description

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding discrepant results from codes using<br/>different rates. In this paper, I compare the effect of varying the mass loss rate in the<br/>stellar evolution code TYCHO on the initial-final mass relation. I computed four sets of<br/>models with varying mass loss rates and metallicities. Due to a large number of models<br/>reaching the luminous blue variable stage, only the two lower metallicity groups were<br/>considered. Their mass loss was analyzed using Python. Luminosity, temperature, and<br/>radius were also compared. The initial-final mass relation plots showed that in the 1/10<br/>solar metallicity case, reducing the mass loss rate tended to increase the dependence of final mass on initial mass. The limited nature of these results implies a need for further study into the effects of using different mass loss rates in the code TYCHO.

ContributorsAuchterlonie, Lauren (Author) / Young, Patrick (Thesis director) / Shkolnik, Evgenya (Committee member) / Starrfield, Sumner (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05