This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 41 - 50 of 243
Filtering by

Clear all filters

Description
As the application of interactive media systems expands to address broader problems in health, education and creative practice, they fall within a higher dimensional space for which it is inherently more complex to design. In response to this need an emerging area of interactive system design, referred to as experiential

As the application of interactive media systems expands to address broader problems in health, education and creative practice, they fall within a higher dimensional space for which it is inherently more complex to design. In response to this need an emerging area of interactive system design, referred to as experiential media systems, applies hybrid knowledge synthesized across multiple disciplines to address challenges relevant to daily experience. Interactive neurorehabilitation (INR) aims to enhance functional movement therapy by integrating detailed motion capture with interactive feedback in a manner that facilitates engagement and sensorimotor learning for those who have suffered neurologic injury. While INR shows great promise to advance the current state of therapies, a cohesive media design methodology for INR is missing due to the present lack of substantial evidence within the field. Using an experiential media based approach to draw knowledge from external disciplines, this dissertation proposes a compositional framework for authoring visual media for INR systems across contexts and applications within upper extremity stroke rehabilitation. The compositional framework is applied across systems for supervised training, unsupervised training, and assisted reflection, which reflect the collective work of the Adaptive Mixed Reality Rehabilitation (AMRR) Team at Arizona State University, of which the author is a member. Formal structures and a methodology for applying them are described in detail for the visual media environments designed by the author. Data collected from studies conducted by the AMRR team to evaluate these systems in both supervised and unsupervised training contexts is also discussed in terms of the extent to which the application of the compositional framework is supported and which aspects require further investigation. The potential broader implications of the proposed compositional framework and methodology are the dissemination of interdisciplinary information to accelerate the informed development of INR applications and to demonstrate the potential benefit of generalizing integrative approaches, merging arts and science based knowledge, for other complex problems related to embodied learning.
ContributorsLehrer, Nicole (Author) / Rikakis, Thanassis (Committee member) / Olson, Loren (Committee member) / Wolf, Steven L. (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2014
153036-Thumbnail Image.png
Description
High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area

High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area is required to meet matching requirements for optimal linearity and thus, the overall speed of the DAC is limited.

In this thesis work, a 12-bit current-steering DAC was designed with current sources scaled below the required matching size to decrease the area and increase the overall speed of the DAC. By scaling the current sources, however, errors due to random mismatch between current sources will arise and additional calibration hardware is necessary to ensure 12-bit linearity. This work presents how to implement a self-calibration DAC that works to fix amplitude errors while maintaining a lower overall area. Additionally, the DAC designed in this thesis investigates the implementation feasibility of a data-interleaved architecture. Data interleaving can increase the total bandwidth of the DACs by 2 with an increase in SQNR by an additional 3 dB.

The final results show that the calibration method can effectively improve the linearity of the DAC. The DAC is able to run up to 400 MSPS frequencies with a 75 dB SFDR performance and above 87 dB SFDR performance at update rates of 200 MSPS.
ContributorsJankunas, Benjamin (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2014
153039-Thumbnail Image.png
Description
Switching Converters (SC) are an excellent choice for hand held devices due to their high power conversion efficiency. However, they suffer from two major drawbacks. The first drawback is that their dynamic response is sensitive to variations in inductor (L) and capacitor (C) values. A cost effective solution is implemented

Switching Converters (SC) are an excellent choice for hand held devices due to their high power conversion efficiency. However, they suffer from two major drawbacks. The first drawback is that their dynamic response is sensitive to variations in inductor (L) and capacitor (C) values. A cost effective solution is implemented by designing a programmable digital controller. Despite variations in L and C values, the target dynamic response can be achieved by computing and programming the filter coefficients for a particular L and C. Besides, digital controllers have higher immunity to environmental changes such as temperature and aging of components. The second drawback of SCs is their poor efficiency during low load conditions if operated in Pulse Width Modulation (PWM) mode. However, if operated in Pulse Frequency Modulation (PFM) mode, better efficiency numbers can be achieved. A mostly-digital way of detecting PFM mode is implemented. Besides, a slow serial interface to program the chip, and a high speed serial interface to characterize mixed signal blocks as well as to ship data in or out for debug purposes are designed. The chip is taped out in 0.18µm IBM's radiation hardened CMOS process technology. A test board is built with the chip, external power FETs and driver IC. At the time of this writing, PWM operation, PFM detection, transitions between PWM and PFM, and both serial interfaces are validated on the test board.
ContributorsMumma Reddy, Abhiram (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ogras, Umit Y. (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2014
153113-Thumbnail Image.png
Description
As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC

As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC converter is connected to the output of each PV module. The DC optimizer architecture has the advantage of performing maximum power-point tracking (MPPT) at the module level, without the high cost of using an inverter on each module (the "microinverter" architecture). This work details the design of a proposed DC optimizer. The design incorporates a series-input parallel-output topology to implement MPPT at the sub-module level. This topology has some advantages over the more common series-output DC optimizer, including relaxed requirements for the system's inverter. An autonomous control scheme is proposed for the series-connected converters, so that no external control signals are needed for the system to operate, other than sunlight. The DC optimizer in this work is designed with an emphasis on efficiency, and to that end it uses GaN FETs and an active clamp technique to reduce switching and conduction losses. As with any parallel-output converter, phase interleaving is essential to minimize output RMS current losses. This work proposes a novel phase-locked loop (PLL) technique to achieve interleaving among the series-input converters.
ContributorsLuster, Daniel (Author) / Ayyanar, Raja (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2014
153022-Thumbnail Image.png
Description
In the sport of competitive water skiing, the skill of a human boat driver can affect athletic performance. Driver influence is not necessarily inhibitive to skiers, however, it reduces the fairness and credibility of the sport overall. In response to the stated problem, this thesis proposes a vision-based real-time control

In the sport of competitive water skiing, the skill of a human boat driver can affect athletic performance. Driver influence is not necessarily inhibitive to skiers, however, it reduces the fairness and credibility of the sport overall. In response to the stated problem, this thesis proposes a vision-based real-time control system designed specifically for tournament waterski boats. The challenges addressed in this thesis include: one, the segmentation of floating objects in frame sequences captured by a moving camera, two, the identification of segmented objects which fit a predefined model, and three, the accurate and fast estimation of camera position and orientation from coplanar point correspondences. This thesis discusses current ideas and proposes new methods for the three challenges mentioned. In the end, a working prototype is produced.
ContributorsWalker, Collin (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Claveau, David (Committee member) / Arizona State University (Publisher)
Created2014
153394-Thumbnail Image.png
Description
As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a

As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements even for sub-Nyquist sampling rates. However, current state-of-the-art reconstruction algorithms suffer from two drawbacks -- They are (1) computationally very expensive and (2) incapable of yielding high fidelity reconstructions for high compression ratios. In computer vision, the final goal is usually to perform an inference task using the images acquired and not signal recovery. With this motivation, this thesis considers the possibility of inference directly from compressed measurements, thereby obviating the need to use expensive reconstruction algorithms. It is often the case that non-linear features are used for inference tasks in computer vision. However, currently, it is unclear how to extract such features from compressed measurements. Instead, using the theoretical basis provided by the Johnson-Lindenstrauss lemma, discriminative features using smashed correlation filters are derived and it is shown that it is indeed possible to perform reconstruction-free inference at high compression ratios with only a marginal loss in accuracy. As a specific inference problem in computer vision, face recognition is considered, mainly beyond the visible spectrum such as in the short wave infra-red region (SWIR), where sensors are expensive.
ContributorsLohit, Suhas Anand (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015
153401-Thumbnail Image.png
Description
Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a fan is not a viable solution for hand-held devices, there

Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a fan is not a viable solution for hand-held devices, there is a strong need for dynamic thermal and power management (DTPM) algorithms that can regulate temperature with minimal performance impact. This abstract presents a DTPM algorithm based on a practical temperature prediction methodology using system identification. The DTPM algorithm dynamically computes a power budget using the predicted temperature, and controls the types and number of active processors as well as their frequencies. Experiments on an octa-core big.LITTLE processor and common Android apps demonstrate that the proposed technique predicts temperature within 3% accuracy, while the DTPM algorithm provides around 6x reduction in temperature variance, and as large as 16% reduction in total platform power compared to using a fan.
ContributorsSingla, Gaurav (Author) / Ogras, Umit Y. (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Unver, Ali (Committee member) / Arizona State University (Publisher)
Created2015
153227-Thumbnail Image.png
Description
Negative Bias Temperature Instability (NBTI) is commonly seen in p-channel transistors under negative gate voltages at an elevated temperature. The interface traps, oxide traps and NBTI mechanisms are discussed and their effect on circuit degradation and results are discussed. This thesis focuses on developing a model for simulating impact of

Negative Bias Temperature Instability (NBTI) is commonly seen in p-channel transistors under negative gate voltages at an elevated temperature. The interface traps, oxide traps and NBTI mechanisms are discussed and their effect on circuit degradation and results are discussed. This thesis focuses on developing a model for simulating impact of NBTI effects at circuit level. The model mimics the effects of degradation caused by the defects.

The NBTI model developed in this work is validated and sanity checked by using the simulation data from silvaco and gives excellent results. Furthermore the susceptibility of CMOS circuits such as the CMOS inverter, and a ring oscillator to NBTI is investigated. The results show that the oscillation frequency of a ring oscillator decreases and the SET pulse broadens with the NBTI.
ContributorsPadala, Sudheer (Author) / Barnaby, Hugh (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
153270-Thumbnail Image.png
Description
Fisheye cameras are special cameras that have a much larger field of view compared to

conventional cameras. The large field of view comes at a price of non-linear distortions

introduced near the boundaries of the images captured by such cameras. Despite this

drawback, they are being used increasingly in many applications of computer

Fisheye cameras are special cameras that have a much larger field of view compared to

conventional cameras. The large field of view comes at a price of non-linear distortions

introduced near the boundaries of the images captured by such cameras. Despite this

drawback, they are being used increasingly in many applications of computer vision,

robotics, reconnaissance, astrophotography, surveillance and automotive applications.

The images captured from such cameras can be corrected for their distortion if the

cameras are calibrated and the distortion function is determined. Calibration also allows

fisheye cameras to be used in tasks involving metric scene measurement, metric

scene reconstruction and other simultaneous localization and mapping (SLAM) algorithms.

This thesis presents a calibration toolbox (FisheyeCDC Toolbox) that implements a collection of some of the most widely used techniques for calibration of fisheye cameras under one package. This enables an inexperienced user to calibrate his/her own camera without the need for a theoretical understanding about computer vision and camera calibration. This thesis also explores some of the applications of calibration such as distortion correction and 3D reconstruction.
ContributorsKashyap Takmul Purushothama Raju, Vinay (Author) / Karam, Lina (Thesis advisor) / Turaga, Pavan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2014
153287-Thumbnail Image.png
Description
The ability to identify unoccupied resources in the radio spectrum is a key capability for opportunistic users in a cognitive radio environment. This paper draws upon and extends geometrically based ideas in statistical signal processing to develop estimators for the rank and the occupied subspace in a multi-user environment from

The ability to identify unoccupied resources in the radio spectrum is a key capability for opportunistic users in a cognitive radio environment. This paper draws upon and extends geometrically based ideas in statistical signal processing to develop estimators for the rank and the occupied subspace in a multi-user environment from multiple temporal samples of the signal received at a single antenna. These estimators enable identification of resources, such as the orthogonal complement of the occupied subspace, that may be exploitable by an opportunistic user. This concept is supported by simulations showing the estimation of the number of users in a simple CDMA system using a maximum a posteriori (MAP) estimate for the rank. It was found that with suitable parameters, such as high SNR, sufficient number of time epochs and codes of appropriate length, the number of users could be correctly estimated using the MAP estimator even when the noise variance is unknown. Additionally, the process of identifying the maximum likelihood estimate of the orthogonal projector onto the unoccupied subspace is discussed.
ContributorsBeaudet, Kaitlyn (Author) / Cochran, Douglas (Thesis advisor) / Turaga, Pavan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2014