This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

157886-Thumbnail Image.png
Description
Visual navigation is a multi-disciplinary field across computer vision, machine learning and robotics. It is of great significance in both research and industrial applications. An intelligent agent with visual navigation ability will be capable of performing the following tasks: actively explore in environments, distinguish and localize a requested target and

Visual navigation is a multi-disciplinary field across computer vision, machine learning and robotics. It is of great significance in both research and industrial applications. An intelligent agent with visual navigation ability will be capable of performing the following tasks: actively explore in environments, distinguish and localize a requested target and approach the target following acquired strategies. Despite a variety of advances in mobile robotics, enabling an autonomous with above-mentioned abilities is still a challenging and complex task. However, the solution to the task is very likely to accelerate the landing of assistive robots.

Reinforcement learning is a method that trains autonomous robot based on rewarding desired behaviors to help it obtain an action policy that maximizes rewards while the robot interacting with the environment. Through trial and error, an agent learns sophisticated and skillful strategies to handle complex tasks in the environment. Inspired by navigation procedures of human beings that when navigating through environments, humans reason about accessible spaces and geometry of the environment a lot based on first-person view, figure out the destination and then ease over, this work develops a model that maps from pixels to actions and inherently estimate the target as well as the free-space map. The model has three major constituents: (i) a cognitive mapper that maps the topologic free-space map from first-person view images, (ii) a target recognition network that locates a desired object and (iii) an action policy deep reinforcement learning network. Further, a planner model with cascade architecture based on multi-scale semantic top-down occupancy map input is proposed.
ContributorsZheng, Shibin (Author) / Yang, Yezhou (Thesis advisor) / Zhang, Wenlong (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2019
157633-Thumbnail Image.png
Description
The ubiquity of single camera systems in society has made improving monocular depth estimation a topic of increasing interest in the broader computer vision community. Inspired by recent work in sparse-to-dense depth estimation, this thesis focuses on sparse patterns generated from feature detection based algorithms as opposed to regular grid

The ubiquity of single camera systems in society has made improving monocular depth estimation a topic of increasing interest in the broader computer vision community. Inspired by recent work in sparse-to-dense depth estimation, this thesis focuses on sparse patterns generated from feature detection based algorithms as opposed to regular grid sparse patterns used by previous work. This work focuses on using these feature-based sparse patterns to generate additional depth information by interpolating regions between clusters of samples that are in close proximity to each other. These interpolated sparse depths are used to enforce additional constraints on the network’s predictions. In addition to the improved depth prediction performance observed from incorporating the sparse sample information in the network compared to pure RGB-based methods, the experiments show that actively retraining a network on a small number of samples that deviate most from the interpolated sparse depths leads to better depth prediction overall.

This thesis also introduces a new metric, titled Edge, to quantify model performance in regions of an image that show the highest change in ground truth depth values along either the x-axis or the y-axis. Existing metrics in depth estimation like Root Mean Square Error(RMSE) and Mean Absolute Error(MAE) quantify model performance across the entire image and don’t focus on specific regions of an image that are hard to predict. To this end, the proposed Edge metric focuses specifically on these hard to classify regions. The experiments also show that using the Edge metric as a small addition to existing loss functions like L1 loss in current state-of-the-art methods leads to vastly improved performance in these hard to classify regions, while also improving performance across the board in every other metric.
ContributorsRai, Anshul (Author) / Yang, Yezhou (Thesis advisor) / Zhang, Wenlong (Committee member) / Liang, Jianming (Committee member) / Arizona State University (Publisher)
Created2019
Description
In a pursuit-evasion setup where one group of agents tracks down another adversarial group, vision-based algorithms have been known to make use of techniques such as Linear Dynamic Estimation to determine the probable future location of an evader in a given environment. This helps a pursuer attain an edge over

In a pursuit-evasion setup where one group of agents tracks down another adversarial group, vision-based algorithms have been known to make use of techniques such as Linear Dynamic Estimation to determine the probable future location of an evader in a given environment. This helps a pursuer attain an edge over the evader that has conventionally benefited from the uncertainty of the pursuit. The pursuer can utilize this knowledge to enable a faster capture of the evader, as opposed to a pursuer that only knows the evader's current location. Inspired by the function of dorsal anterior cingulate cortex (dACC) neurons in natural predators, the use of a predictive model that is built using an encoder-decoder Long Short-Term Memory (LSTM) Network and can produce a more accurate estimate of the evader's future location is proposed. This enables an even quicker capture of a target when compared to previously used filtering-based methods. The effectiveness of the approach is evaluated by setting up these agents in an environment based in the Modular Open Robots Simulation Engine (MORSE). Cross-domain adaptability of the method, without the explicit need to retrain the prediction model is demonstrated by evaluating it in another domain.
ContributorsGodbole, Sumedh (Author) / Yang, Yezhou (Thesis advisor) / Srivastava, Siddharth (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
Description
Self-Driving cars are a long-lasting ambition for many AI scientists and engineers. In the last decade alone, many self-driving cars like Google Waymo, Tesla Autopilot, Uber, etc. have been roaming the streets of many cities. As a rapidly expanding field, researchers all over the world are attempting to develop more

Self-Driving cars are a long-lasting ambition for many AI scientists and engineers. In the last decade alone, many self-driving cars like Google Waymo, Tesla Autopilot, Uber, etc. have been roaming the streets of many cities. As a rapidly expanding field, researchers all over the world are attempting to develop more safe and efficient AI agents that can navigate through our cities. However, driving is a very complex task to master even for a human, let alone the challenges in developing robots to do the same. It requires attention and inputs from the surroundings of the car, and it is nearly impossible for us to program all the possible factors affecting this complex task. As a solution, imitation learning was introduced, wherein the agents learn a policy, mapping the observations to the actions through demonstrations given by humans. Through imitation learning, one could easily teach self-driving cars the expected behavior in many scenarios. Despite their autonomous nature, it is undeniable that humans play a vital role in the development and execution of safe and trustworthy self-driving cars and hence form the strongest link in this application of Human-Robot Interaction. Several approaches were taken to incorporate this link between humans and self-driving cars, one of which involves the communication of human's navigational instruction to self-driving cars. The communicative channel provides humans with control over the agent’s decisions as well as the ability to guide them in real-time. In this work, the abilities of imitation learning in creating a self-driving agent that can follow natural language instructions given by humans based on environmental objects’ descriptions were explored. The proposed model architecture is capable of handling latent temporal context in these instructions thus making the agent capable of taking multiple decisions along its course. The work shows promising results that push the boundaries of natural language instructions and their complexities in navigating self-driving cars through towns.
ContributorsMoudhgalya, Nithish B (Author) / Amor, Hani Ben (Thesis advisor) / Baral, Chitta (Committee member) / Yang, Yezhou (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021