This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

Description
Graph matching is a fundamental but notoriously difficult problem due to its NP-hard nature, and serves as a cornerstone for a series of applications in machine learning and computer vision, such as image matching, dynamic routing, drug design, to name a few. Although there has been massive previous investigation on

Graph matching is a fundamental but notoriously difficult problem due to its NP-hard nature, and serves as a cornerstone for a series of applications in machine learning and computer vision, such as image matching, dynamic routing, drug design, to name a few. Although there has been massive previous investigation on high-performance graph matching solvers, it still remains a challenging task to tackle the matching problem under real-world scenarios with severe graph uncertainty (e.g., noise, outlier, misleading or ambiguous link).In this dissertation, a main focus is to investigate the essence and propose solutions to graph matching with higher reliability under such uncertainty. To this end, the proposed research was conducted taking into account three perspectives related to reliable graph matching: modeling, optimization and learning. For modeling, graph matching is extended from typical quadratic assignment problem to a more generic mathematical model by introducing a specific family of separable function, achieving higher capacity and reliability. In terms of optimization, a novel high gradient-efficient determinant-based regularization technique is proposed in this research, showing high robustness against outliers. Then learning paradigm for graph matching under intrinsic combinatorial characteristics is explored. First, a study is conducted on the way of filling the gap between discrete problem and its continuous approximation under a deep learning framework. Then this dissertation continues to investigate the necessity of more reliable latent topology of graphs for matching, and propose an effective and flexible framework to obtain it. Coherent findings in this dissertation include theoretical study and several novel algorithms, with rich experiments demonstrating the effectiveness.
ContributorsYu, Tianshu (Author) / Li, Baoxin (Thesis advisor) / Wang, Yalin (Committee member) / Yang, Yezhou (Committee member) / Yang, Yingzhen (Committee member) / Arizona State University (Publisher)
Created2021
168275-Thumbnail Image.png
Description
Graph matching is a fundamental but notoriously difficult problem due to its NP-hard nature, and serves as a cornerstone for a series of applications in machine learning and computer vision, such as image matching, dynamic routing, drug design, to name a few. Although there has been massive previous investigation on

Graph matching is a fundamental but notoriously difficult problem due to its NP-hard nature, and serves as a cornerstone for a series of applications in machine learning and computer vision, such as image matching, dynamic routing, drug design, to name a few. Although there has been massive previous investigation on high-performance graph matching solvers, it still remains a challenging task to tackle the matching problem under real-world scenarios with severe graph uncertainty (e.g., noise, outlier, misleading or ambiguous link).In this dissertation, a main focus is to investigate the essence and propose solutions to graph matching with higher reliability under such uncertainty. To this end, the proposed research was conducted taking into account three perspectives related to reliable graph matching: modeling, optimization and learning. For modeling, graph matching is extended from typical quadratic assignment problem to a more generic mathematical model by introducing a specific family of separable function, achieving higher capacity and reliability. In terms of optimization, a novel high gradient-efficient determinant-based regularization technique is proposed in this research, showing high robustness against outliers. Then learning paradigm for graph matching under intrinsic combinatorial characteristics is explored. First, a study is conducted on the way of filling the gap between discrete problem and its continuous approximation under a deep learning framework. Then this dissertation continues to investigate the necessity of more reliable latent topology of graphs for matching, and propose an effective and flexible framework to obtain it. Coherent findings in this dissertation include theoretical study and several novel algorithms, with rich experiments demonstrating the effectiveness.
ContributorsYu, Tianshu (Author) / Li, Baoxin (Thesis advisor) / Wang, Yalin (Committee member) / Yang, Yezhou (Committee member) / Yang, Yingzhen (Committee member) / Arizona State University (Publisher)
Created2021
168367-Thumbnail Image.png
Description
In recent years, there has been significant progress in deep learning and computer vision, with many models proposed that have achieved state-of-art results on various image recognition tasks. However, to explore the full potential of the advances in this field, there is an urgent need to push the processing of

In recent years, there has been significant progress in deep learning and computer vision, with many models proposed that have achieved state-of-art results on various image recognition tasks. However, to explore the full potential of the advances in this field, there is an urgent need to push the processing of deep networks from the cloud to edge devices. Unfortunately, many deep learning models cannot be efficiently implemented on edge devices as these devices are severely resource-constrained. In this thesis, I present QU-Net, a lightweight binary segmentation model based on the U-Net architecture. Traditionally, neural networks consider the entire image to be significant. However, in real-world scenarios, many regions in an image do not contain any objects of significance. These regions can be removed from the original input allowing a network to focus on the relevant regions and thus reduce computational costs. QU-Net proposes the salient regions (binary mask) that the deeper models can use as the input. Experiments show that QU-Net helped achieve a computational reduction of 25% on the Microsoft Common Objects in Context (MS COCO) dataset and 57% on the Cityscapes dataset. Moreover, QU-Net is a generalizable model that outperforms other similar works, such as Dynamic Convolutions.
ContributorsSanthosh Kumar Varma, Rahul (Author) / Yang, Yezhou (Thesis advisor) / Fan, Deliang (Committee member) / Yang, Yingzhen (Committee member) / Arizona State University (Publisher)
Created2021
161869-Thumbnail Image.png
Description
With the recent boom in artificial intelligence, various learning methods and information are pouring out. However, there are many abbreviations and jargons to read without knowing the history and development trend of artificial intelligence, which is a barrier to entry. This study predicts the future development direction by synthesizing the

With the recent boom in artificial intelligence, various learning methods and information are pouring out. However, there are many abbreviations and jargons to read without knowing the history and development trend of artificial intelligence, which is a barrier to entry. This study predicts the future development direction by synthesizing the concept of Neuro symbolic AI, which is a new direction of artificial intelligence, the history of artificial intelligence from which such concept came out, and applied studies, and by synthesizing and summarizing the limitations of the current research projects. It is a guide for those who want to study neural symbols. In this paper, it describes the history of artificial intelligence and the historical background of the emergence of neural symbols. In the development trend, the challenges faced by the neural symbolic, measures to overcome, and the Neuro Symbolic A.I. applied in various fields are described. (Knowledge based Question Answering, VQA(Visual Question Answering), image retrieve, etc.). It predicts the future development direction of neuro symbolic artificial intelligence based on the contents obtained through previous studies.
ContributorsChoy, Kumhee (Author) / Yang, Yezhou (Thesis advisor) / Yang, Yingzhen (Committee member) / Bansal, Ajay (Committee member) / Arizona State University (Publisher)
Created2021