This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 6 of 6
Filtering by

Clear all filters

135257-Thumbnail Image.png
Description
Turmeric is the bright yellow root that has been used as a spice, healing remedy, and textile dye. Previous studies have suggested that the most active ingredient in turmeric, curcumin, could reduce serum cholesterol concentration. However, most of these studies were conducted on animals and not many have been done

Turmeric is the bright yellow root that has been used as a spice, healing remedy, and textile dye. Previous studies have suggested that the most active ingredient in turmeric, curcumin, could reduce serum cholesterol concentration. However, most of these studies were conducted on animals and not many have been done on controlled human trials. This randomized, double-blinded, controlled crossover study evaluates the effects of turmeric on blood cholesterol concentrations including total cholesterol, LDL cholesterol, HLD cholesterol, and triglycerides. In this study, eight healthy participants between the ages of 18 and 45 were randomized to receive either 500mg capsules of turmeric or placebo for a period of three weeks. Following a wash-out period of five weeks, all participants were crossed over to the alternative treatment for another three weeks. After comparing the 3 week treatment and placebo phases, turmeric showed no significant effect on serum lipid concentrations. Furthermore, a slight increase in total cholesterol concentrations was observed following the turmeric phase when compared to the placebo phase.
ContributorsDo, Ngoc Bich Thi (Author) / Johnston, Carol (Thesis director) / Whisner, Corrie (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134746-Thumbnail Image.png
Description
Turmeric, scientifically known as Curcuma longa, is a tropical plant that is most often consumed in India.1 The rhizome of the plant is dried and then ground into a fine, vibrant yellow powder. In addition to its function as a spice, turmeric is also used in traditional Ayervedic medicine due

Turmeric, scientifically known as Curcuma longa, is a tropical plant that is most often consumed in India.1 The rhizome of the plant is dried and then ground into a fine, vibrant yellow powder. In addition to its function as a spice, turmeric is also used in traditional Ayervedic medicine due to its unique medical properties. These unique properties are attributed to the three major constituents of turmeric: curcumin, α-isocurcumin, and β-isocurcumin.2 Curcumin (Diferuloylmethane; C21H20O6), makes up 5% of turmeric by weight, and is the most prominent active ingredient within the turmeric root. Perhaps the most intriguing characteristic about curcumin is its ability to modulate targets such as, but not limited to, transcription factors, enzymes, apoptosis genes, and growth factors.1 Modern medical research has determined curcumin to be a viable treatment and prevention method for disease such as type II diabetes mellitus, rheumatoid arthritis, liver cirrhosis, and certain cancers. However, research on turmeric’s effects on gastrointestinal health is significantly lacking. This randomized, double-blind, cross-over trial looked to see if supplemental turmeric (500 mg as dried root powder) would significantly raise breath hydrogen emission (BHE) and reduce small bowel transit time (SBTT) in 8 female adults who were suffering from chronic constipation. Although supplemental turmeric did not significantly impact BHE or SBTT, the number of bowel movements greatly increased during turmeric intervention.
ContributorsUgarte, Noel (Author) / Johnston, Carol (Thesis director) / Whisner, Corrie (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154431-Thumbnail Image.png
Description
Vitamin B12, found only in animal products, is a water-soluble vitamin important for DNA methylation, purine and pyrimidine synthesis, and the myelination of nerves. Symptoms of vitamin B12 deficiency include anemia, gait disturbances, altered vibration proprioception, impaired vision, psychosis, depression, dementia-like illness, and ultimately death. Because vegetarians and

Vitamin B12, found only in animal products, is a water-soluble vitamin important for DNA methylation, purine and pyrimidine synthesis, and the myelination of nerves. Symptoms of vitamin B12 deficiency include anemia, gait disturbances, altered vibration proprioception, impaired vision, psychosis, depression, dementia-like illness, and ultimately death. Because vegetarians and vegans consume fewer animal products in their diet than omnivores, they are inherently more at risk for developing these symptoms of vitamin B12 deficiency. Thus, the purpose of this study is to examine the correlation between nervous system markers (balance, dexterity, and vibration sensitivity) and markers of vitamin B12 nutriture (serum B12 and serum holo-transcobalamin II) in a cross-sectional study (n=38). In addition, the impact of daily oral vitamin B12 supplementation on these markers in an 8-week randomized controlled trial was also examined (n=18). The results of the cross-sectional study revealed a moderate correlation (R=-0.351, p=0.031) between serum B12 and left-hand functional dexterity. The results of the intervention study revealed no significant time*group interactions for markers of nervous system functions and biochemical values (after the removal of outliers). In addition, the time*group interaction appeared to be larger for those individuals with a baseline serum B12 of less than 303 pmol/L. These results suggest that vitamin B12 supplementation may have a more pronounced effect on those individuals who are in a state of vitamin B12 depletion (<303 pmol/L serum concentration). In addition, the results also suggest that 8 weeks of oral supplementation is not a long enough period to create significant clinical change, and it is likely that improvements in neurological measures would require long-term supplementation.
ContributorsArnold, Taylor (Author) / Johnston, Carol (Thesis advisor) / Whisner, Corrie (Committee member) / Ohri-Vachaspati, Punam (Committee member) / Lee, Chong (Committee member) / Aleck, Kyrieckos (Committee member) / Arizona State University (Publisher)
Created2016
148324-Thumbnail Image.png
Description

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects mood<br/>state in healthy young adults. This was a randomized, single blinded controlled trial consisting of<br/>25 subjects. Participants were randomly assigned to either the vinegar group (consumed 2<br/>tablespoons of liquid vinegar diluted in one cup water twice daily with meals) or the control<br/>group (consumed one vinegar pill daily with a meal), and the intervention lasted 4 weeks.<br/>Subjects completed mood questionnaires pre- and post-intervention. Results showed a significant<br/>improvement in CES-D and POMS-Depression scores for the vinegar group compared to the<br/>control. This study suggests that vinegar ingestion may improve depressive symptoms in healthy<br/>young adults.

ContributorsWilliams, Susanna (Author) / Johnston, Carol (Thesis director) / Whisner, Corrie (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
161230-Thumbnail Image.png
Description
Vinegar is gaining popularity as a natural and proven treatment for common diseases and conditions ranging from high blood pressure to diabetes. While the evidence to support the benefits of vinegar is growing, few studies have considered possible negative consequences. One concern relates to the effect of vinegar

Vinegar is gaining popularity as a natural and proven treatment for common diseases and conditions ranging from high blood pressure to diabetes. While the evidence to support the benefits of vinegar is growing, few studies have considered possible negative consequences. One concern relates to the effect of vinegar on saliva pH and dental erosion. The aim of this study is to explore this relationship as well as unsubstantiated claims that vinegar, although acidic, has an alkalizing effect on the overall body, specifically looking at its effect on resting saliva pH. Healthy adults aged 18-45 were recruited for this trial. Twenty-two participants completed this eight-week, parallel-arm, randomized, double blinded study that looked at the effect that regular consumption of red wine vinegar (two tablespoons taken two times per day before a meal) had on resting salivary pH and dental erosion compared to a control (low dosage vinegar pill taken two times a day before a meal). Resting saliva pH was measured at home using the pH20H application and pH strips at week 0 and 8 of the trial. Erosion was noted using the Basic Erosive Wear Examination (BEWE) by a registered dental hygienist at week 1 and 8 of trial. Results indicate no mean difference in resting salivary pH in either treatment group after eight weeks (p value, 0.49). However, there was a statistical significant mean difference in dental erosion between the VIN and CON group (p value, 0.05). Statistical significance in dental erosion, typically a gradual process, in just eight weeks is a significant finding and warrants concern about long time use of vinegar and dental health. Further exploration into this relationship is needed.
ContributorsAnderson, Summer Lynn (Author) / Johnston, Carol (Thesis advisor) / Whisner, Corrie (Committee member) / Alexon, Christy (Committee member) / Arizona State University (Publisher)
Created2019
153965-Thumbnail Image.png
Description
Vitamin D deficiency has been previously associated with a higher Alzheimer’s disease (AD) risk, a condition marked by dependent living and severe cognitive impairment. AD is histologically defined by the presence of brain amyloid beta (Aβ) plaques and neurofibrillary tangles. Ways to enhance Aβ clearance have been examined in order

Vitamin D deficiency has been previously associated with a higher Alzheimer’s disease (AD) risk, a condition marked by dependent living and severe cognitive impairment. AD is histologically defined by the presence of brain amyloid beta (Aβ) plaques and neurofibrillary tangles. Ways to enhance Aβ clearance have been examined in order to sustain cognition and delay AD onset. In vitro and in vivo studies suggest that vitamin D might enhance brain Aβ transportation to the periphery by up-regulating P-glycoprotein production. The purpose of this study was to examine the effect of vitamin D supplementation on plasma Aβ in an older population.

This study was a parallel-arm, double-blinded, randomized control trial. Participants consumed either a vitamin D supplement or placebo once a week for eight weeks (n=23). Only vitamin D insufficient (serum total 25-OH, D < 30 ng/mL) people were included in the study, and all participants were considered to be cognitively normal (MMSE scores > 27). Serum total 25-OH, D and plasma Aβ1-40 measurements were recorded before and after the eight-week trial. The plasma Aβ1-40 change was compared between the vitamin D group and control group.

The vitamin D group experienced a 45% greater change in plasma Aβ1-40 than the control group. The effect size was 0.228 when controlling for baseline plasma Aβ1-40 (p=0.045), 0.197 when controlling for baseline plasma Aβ1-40 and baseline physical activity (p=0.085), and 0.179 when controlling for baseline plasma Aβ1-40, baseline physical activity, and age (p=0.116). In conclusion, vitamin D supplementation might increase brain Aβ clearance in humans, but physical activity and age also appear to modulate Aβ metabolism.
ContributorsMiller, Brendan Joseph (Author) / Johnston, Carol (Thesis advisor) / Whisner, Corrie (Committee member) / Tasevska, Natasha (Committee member) / Arizona State University (Publisher)
Created2015