This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

134537-Thumbnail Image.png
Description
Located in the Sunbelt of the Southwestern United States, Phoenix Arizona finds itself in one of the hottest, driest places in the world. Thankfully, Phoenix has the Salt River, Gila River, Verde River, and a vast aquifer to meet the water demands of the municipal, industrial, and agricultural sectors. However,

Located in the Sunbelt of the Southwestern United States, Phoenix Arizona finds itself in one of the hottest, driest places in the world. Thankfully, Phoenix has the Salt River, Gila River, Verde River, and a vast aquifer to meet the water demands of the municipal, industrial, and agricultural sectors. However, rampant groundwater pumping and over-allocation of these water supplies based on unprecedented, high flows of the Colorado River have created challenges for water managers to ensure adequate water supply for the future. Combined with the current 17-year drought and the warming and drying projections of climate change, the future of water availability in Phoenix will depend on the strength of water management laws, educating the public, developing a strong sense of community, and using development to manage population and support sustainability. As the prevalence of agriculture declines in and around Phoenix, a substantial amount of water is saved. Instead of storing this saved water, Phoenix is using it to support further development. Despite uncertainty regarding the abundant and continuous availability of Phoenix's water resources, development has hardly slowed and barely shifted directions to support sustainability. Phoenix was made to grow until it legally cannot expand anymore. In order to develop solutions, we must first understand the push for development in water-stressed Phoenix, Arizona.
ContributorsVasquez, Brianna Nicole (Author) / Heimsath, Arjun (Thesis director) / Whipple, Kelin (Committee member) / School of Earth and Space Exploration (Contributor) / School of Art (Contributor) / School of Community Resources and Development (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
131856-Thumbnail Image.png
Description
The project was designed to increase awareness of sustainability and environmental science in public high school students who would otherwise not be exposed to complex environmental problems. This was done by testing the effectiveness of a simple yet comprehensive curriculum that could satisfy and expand the scope of the Arizona

The project was designed to increase awareness of sustainability and environmental science in public high school students who would otherwise not be exposed to complex environmental problems. This was done by testing the effectiveness of a simple yet comprehensive curriculum that could satisfy and expand the scope of the Arizona Education Science Standard, Essential HS.E1U3.14, while simultaneously being accessible to (and teachable by) any school instructor. Another goal of the project is to stimulate the minds of students who would otherwise not be introduced to the topics of sustainability and environmental science. Utilizing proven visualization and engagement techniques, the curriculum focuses on five key subjects: waste, water, energy, ecosystems, and environmental challenges. Each of these subjects had an educational presentation, interactive activities, question and answer sessions, and bonus activities. To test the overall effectiveness of the curriculum, students were given a pretest to gauge initial comprehension, and then after the five subjects (or modules) were taught, the same test was distributed again to the students. The aforementioned was done with two groups of students. Posttest results support the project effectiveness. The data indicate that the lessons had a positive impact on the test results, with one class averaging 33.6% better on the posttest than the pretest, indicating that the concepts taught did resonate with the students in a measurable way.
ContributorsAcciardo, Nicholas William (Author) / Saffell, Erinanne (Thesis director) / Whipple, Kelin (Committee member) / School of Sustainability (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
165679-Thumbnail Image.png
Description
The Greater Obsidian Pool Area just south of the Mud Volcano area in Yellowstone National Park is an active and ever-changing hot spring region. Situated next to a lake in a meadow between several hills of glacial deposits, north of the Elephant Back rhyolite flow, a diverse group of hot

The Greater Obsidian Pool Area just south of the Mud Volcano area in Yellowstone National Park is an active and ever-changing hot spring region. Situated next to a lake in a meadow between several hills of glacial deposits, north of the Elephant Back rhyolite flow, a diverse group of hot springs has been developing. This study examines the geologic and geomorphic context of the hot springs, finding evidence for a previously undiscovered hydrothermal explosion crater and examining the deposits around the region that contribute to properties of the groundwater table. Hot spring geochemical measurements (Cl- and SO4-2) taken over the course of 20 years are used to determine fluid sourcing of the springs. The distribution of Cl-, an indicator of water-rock interaction, in the hot springs leads to the theory of a fissure delivering hydrothermal fluid in a line across the hot spring zone, with meteoric water from incoming groundwater diluting hot springs moving further from the fissure. A possible second dry fissure delivering mostly gas is also a possible explanation for some elevated sulfate concentrations in certain springs. The combination of geology, geomorphology, and geochemistry reveals how the surface and subsurface operate to generate different hot spring compositions.
ContributorsAlexander, Erin (Author) / Shock, Everett (Thesis director) / Whipple, Kelin (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05