This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

154532-Thumbnail Image.png
Description
Modern systems that measure dynamical phenomena often have limitations as to how many sensors can operate at any given time step. This thesis considers a sensor scheduling problem in which the source of a diffusive phenomenon is to be localized using single point measurements of its concentration. With a

Modern systems that measure dynamical phenomena often have limitations as to how many sensors can operate at any given time step. This thesis considers a sensor scheduling problem in which the source of a diffusive phenomenon is to be localized using single point measurements of its concentration. With a linear diffusion model, and in the absence of noise, classical observability theory describes whether or not the system's initial state can be deduced from a given set of linear measurements. However, it does not describe to what degree the system is observable. Different metrics of observability have been proposed in literature to address this issue. Many of these methods are based on choosing optimal or sub-optimal sensor schedules from a predetermined collection of possibilities. This thesis proposes two greedy algorithms for a one-dimensional and two-dimensional discrete diffusion processes. The first algorithm considers a deterministic linear dynamical system and deterministic linear measurements. The second algorithm considers noise on the measurements and is compared to a Kalman filter scheduling method described in published work.
ContributorsNajam, Anbar (Author) / Cochran, Douglas (Thesis advisor) / Turaga, Pavan (Committee member) / Wang, Chao (Committee member) / Arizona State University (Publisher)
Created2016
161797-Thumbnail Image.png
Description
This dissertation aims to study the electron and spin transport, scattering in two dimensional pseudospin-1 lattice systems, hybrid systems of topological insulator and magnetic insulators, and molecule chain systems. For pseudospin-1 systems, the energy band consists of a pair of Dirac cones and a flat band through the connecting point

This dissertation aims to study the electron and spin transport, scattering in two dimensional pseudospin-1 lattice systems, hybrid systems of topological insulator and magnetic insulators, and molecule chain systems. For pseudospin-1 systems, the energy band consists of a pair of Dirac cones and a flat band through the connecting point of the cones. First, contrary to the conditional wisdom that flatband can localize electrons, I find that in a non-equilibrium situation where a constant electric field is suddenly switched on, the flat band can enhance the resulting current in both the linear and nonlinear response regimes compared to spin-1/2 system. Second, in the setup of massive pseudospin-1 electron scattering over a gate potential scatterer, I discover the large resonant skew scattering called super skew scattering, which does not arise in the corresponding spin-1/2 system and massless pseudospin-1 system. Third, by applying an appropriate gate voltage to generate a cavity in an alpha-T3 lattice, I find the exponential decay of the quasiparticles from a chaotic cavity, with a one-to-one correspondence between the exponential decay rate and the Berry phase for the entire family of alpha-T3 materials. Based on the hybrid system of a ferromagnetic insulator on top of a topological insulator, I first investigate the magnetization dynamics of a pair of ferromagnetic insulators deposited on the surface of a topological insulator. The spin polarized current on the surface of topological insulator can affect the magnetization of the two ferromagnetic insulators through proximity effect, which in turn modulates the electron transport, giving rise to the robust phase locking between the two magnetization dynamics. Second, by putting a skyrmion structure on top of a topological insulator, I find robust electron skew scattering against skyrmion structure even with deformation, due to the emergence of resonant modes. The chirality of molecule can lead to spin polarized transport due to the spin orbit interaction. I investigate spin transport through a chiral polyacetylene molecule and uncover the emergence of spin Fano resonances as a manifestation of the chiral induced spin selectivity effect.
ContributorsWang, Chengzhen (Author) / Lai, Ying-Cheng (Thesis advisor) / Yu, Hongbin (Committee member) / Wang, Chao (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2021