This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 8 of 8
Filtering by

Clear all filters

155963-Thumbnail Image.png
Description
Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to representation learning and task learning are studied.

Multiple-instance learning which is

Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to representation learning and task learning are studied.

Multiple-instance learning which is generalization of supervised learning, is one

example of task learning that is discussed. In particular, a novel non-parametric k-

NN-based multiple-instance learning is proposed, which is shown to outperform other

existing approaches. This solution is applied to a diabetic retinopathy pathology

detection problem eectively.

In cases of representation learning, generality of neural features are investigated

rst. This investigation leads to some critical understanding and results in feature

generality among datasets. The possibility of learning from a mentor network instead

of from labels is then investigated. Distillation of dark knowledge is used to eciently

mentor a small network from a pre-trained large mentor network. These studies help

in understanding representation learning with smaller and compressed networks.
ContributorsVenkatesan, Ragav (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2017
156084-Thumbnail Image.png
Description
The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos.

The feature extraction processes can be categorized into three groups. The first group contains processes that are hand-crafted for a specific task. Hand-engineering features requires the knowledge of domain experts and manual labor. However, the feature extraction process is interpretable and explainable. Next group contains the latent-feature extraction processes. While the original feature lies in a high-dimensional space, the relevant factors for a task often lie on a lower dimensional manifold. The latent-feature extraction employs hidden variables to expose the underlying data properties that cannot be directly measured from the input. Latent features seek a specific structure such as sparsity or low-rank into the derived representation through sophisticated optimization techniques. The last category is that of deep features. These are obtained by passing raw input data with minimal pre-processing through a deep network. Its parameters are computed by iteratively minimizing a task-based loss.

In this dissertation, I present four pieces of work where I create and learn suitable data representations. The first task employs hand-crafted features to perform clinically-relevant retrieval of diabetic retinopathy images. The second task uses latent features to perform content-adaptive image enhancement. The third task ranks a pair of images based on their aestheticism. The goal of the last task is to capture localized image artifacts in small datasets with patch-level labels. For both these tasks, I propose novel deep architectures and show significant improvement over the previous state-of-art approaches. A suitable combination of feature representations augmented with an appropriate learning approach can increase performance for most visual computing tasks.
ContributorsChandakkar, Parag Shridhar (Author) / Li, Baoxin (Thesis advisor) / Yang, Yezhou (Committee member) / Turaga, Pavan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2017
187693-Thumbnail Image.png
Description
Simultaneous localization and mapping (SLAM) has traditionally relied on low-level geometric or optical features. However, these features-based SLAM methods often struggle with feature-less or repetitive scenes. Additionally, low-level features may not provide sufficient information for robot navigation and manipulation, leaving robots without a complete understanding of the 3D spatial world.

Simultaneous localization and mapping (SLAM) has traditionally relied on low-level geometric or optical features. However, these features-based SLAM methods often struggle with feature-less or repetitive scenes. Additionally, low-level features may not provide sufficient information for robot navigation and manipulation, leaving robots without a complete understanding of the 3D spatial world. Advanced information is necessary to address these limitations. Fortunately, recent developments in learning-based 3D reconstruction allow robots to not only detect semantic meanings, but also recognize the 3D structure of objects from a few images. By combining this 3D structural information, SLAM can be improved from a low-level approach to a structure-aware approach. This work propose a novel approach for multi-view 3D reconstruction using recurrent transformer. This approach allows robots to accumulate information from multiple views and encode them into a compact latent space. The resulting latent representations are then decoded to produce 3D structural landmarks, which can be used to improve robot localization and mapping.
ContributorsHuang, Chi-Yao (Author) / Yang, Yezhou (Thesis advisor) / Turaga, Pavan (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2023
187459-Thumbnail Image.png
Description
In the era of data explosion, massive data is generated from various sources at an unprecedented speed. The ever-growing amount of data reveals enormous opportunities for developing novel data-driven solutions to unsolved problems. In recent years, benefiting from numerous public datasets and advances in deep learning, data-driven approaches in the

In the era of data explosion, massive data is generated from various sources at an unprecedented speed. The ever-growing amount of data reveals enormous opportunities for developing novel data-driven solutions to unsolved problems. In recent years, benefiting from numerous public datasets and advances in deep learning, data-driven approaches in the computer vision domain have demonstrated superior performance with high adaptability on various data and tasks. Meanwhile, signal processing has long been dominated by techniques derived from rigorous mathematical models built upon prior knowledge of signals. Due to the lack of adaptability to real data and applications, model-based methods often suffer from performance degradation and engineering difficulties. In this dissertation, multiple signal processing problems are studied from vision-inspired data representation and learning perspectives to address the major limitation on adaptability. Corresponding data-driven solutions are proposed to achieve significantly improved performance over conventional solutions. Specifically, in the compressive sensing domain, an open-source image compressive sensing toolbox and benchmark to standardize the implementation and evaluation of reconstruction methods are first proposed. Then a plug-and-play compression ratio adapter is proposed to enable the adaptability of end-to-end data-driven reconstruction methods to variable compression ratios. Lastly, the problem of transfer learning from images to bioelectric signals is experimentally studied to demonstrate the improved performance of data-driven reconstruction. In the image subsampling domain, task-adaptive data-driven image subsampling is studied to reduce data redundancy and retain information of interest simultaneously. In the semiconductor analysis domain, the data-driven automatic error detection problem is studied in the context of integrated circuit segmentation for the first time. In the light detection and ranging(LiDAR) camera calibration domain, the calibration accuracy degradation problem in low-resolution LiDAR scenarios is addressed with data-driven techniques.
ContributorsZhang, Zhikang (Author) / Ren, Fengbo (Thesis advisor) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2023
161270-Thumbnail Image.png
Description
A massive volume of data is generated at an unprecedented rate in the information age. The growth of data significantly exceeds the computing and storage capacities of the existing digital infrastructure. In the past decade, many methods are invented for data compression, compressive sensing and reconstruction, and compressed learning (learning

A massive volume of data is generated at an unprecedented rate in the information age. The growth of data significantly exceeds the computing and storage capacities of the existing digital infrastructure. In the past decade, many methods are invented for data compression, compressive sensing and reconstruction, and compressed learning (learning directly upon compressed data) to overcome the data-explosion challenge. While prior works are predominantly model-based, focus on small models, and not suitable for task-oriented sensing or hardware acceleration, the number of available models for compression-related tasks has escalated by orders of magnitude in the past decade. Motivated by this significant growth and the success of big data, this dissertation proposes to revolutionize both the compressive sensing reconstruction (CSR) and compressed learning (CL) methods from the data-driven perspective. In this dissertation, a series of topics on data-driven CSR are discussed. Individual data-driven models are proposed for the CSR of bio-signals, images, and videos with improved compression ratio and recovery fidelity trade-off. Specifically, a scalable Laplacian pyramid reconstructive adversarial network (LAPRAN) is proposed for single-image CSR. LAPRAN progressively reconstructs images following the concept of the Laplacian pyramid through the concatenation of multiple reconstructive adversarial networks (RANs). For the CSR of videos, CSVideoNet is proposed to improve the spatial-temporal resolution of reconstructed videos. Apart from CSR, data-driven CL is discussed in the dissertation. A CL framework is proposed to extract features directly from compressed data for image classification, objection detection, and semantic/instance segmentation. Besides, the spectral bias of neural networks is analyzed from the frequency perspective, leading to a learning-based frequency selection method for identifying the trivial frequency components which can be removed without accuracy loss. Compared with the conventional spatial downsampling approaches, the proposed frequency-domain learning method can achieve higher accuracy with reduced input data size. The methodologies proposed in this dissertation are not restricted to the above-mentioned applications. The dissertation also discusses other potential applications and directions for future research.
ContributorsXu, Kai (Author) / Ren, Fengbo (Thesis advisor) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
161945-Thumbnail Image.png
Description
Statistical Shape Modeling is widely used to study the morphometrics of deformable objects in computer vision and biomedical studies. There are mainly two viewpoints to understand the shapes. On one hand, the outer surface of the shape can be taken as a two-dimensional embedding in space. On the other hand,

Statistical Shape Modeling is widely used to study the morphometrics of deformable objects in computer vision and biomedical studies. There are mainly two viewpoints to understand the shapes. On one hand, the outer surface of the shape can be taken as a two-dimensional embedding in space. On the other hand, the outer surface along with its enclosed internal volume can be taken as a three-dimensional embedding of interests. Most studies focus on the surface-based perspective by leveraging the intrinsic features on the tangent plane. But a two-dimensional model may fail to fully represent the realistic properties of shapes with both intrinsic and extrinsic properties. In this thesis, severalStochastic Partial Differential Equations (SPDEs) are thoroughly investigated and several methods are originated from these SPDEs to try to solve the problem of both two-dimensional and three-dimensional shape analyses. The unique physical meanings of these SPDEs inspired the findings of features, shape descriptors, metrics, and kernels in this series of works. Initially, the data generation of high-dimensional shapes, here, the tetrahedral meshes, is introduced. The cerebral cortex is taken as the study target and an automatic pipeline of generating the gray matter tetrahedral mesh is introduced. Then, a discretized Laplace-Beltrami operator (LBO) and a Hamiltonian operator (HO) in tetrahedral domain with Finite Element Method (FEM) are derived. Two high-dimensional shape descriptors are defined based on the solution of the heat equation and Schrödinger’s equation. Considering the fact that high-dimensional shape models usually contain massive redundancies, and the demands on effective landmarks in many applications, a Gaussian process landmarking on tetrahedral meshes is further studied. A SIWKS-based metric space is used to define a geometry-aware Gaussian process. The study of the periodic potential diffusion process further inspired the idea of a new kernel call the geometry-aware convolutional kernel. A series of Bayesian learning methods are then introduced to tackle the problem of shape retrieval and classification. Experiments of every single item are demonstrated. From the popular SPDE such as the heat equation and Schrödinger’s equation to the general potential diffusion equation and the specific periodic potential diffusion equation, it clearly shows that classical SPDEs play an important role in discovering new features, metrics, shape descriptors and kernels. I hope this thesis could be an example of using interdisciplinary knowledge to solve problems.
ContributorsFan, Yonghui (Author) / Wang, Yalin (Thesis advisor) / Lepore, Natasha (Committee member) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
162001-Thumbnail Image.png
Description
Floating trash objects are very commonly seen on water bodies such as lakes, canals and rivers. With the increase of plastic goods and human activities near the water bodies, these trash objects can pile up and cause great harm to the surrounding environment. Using human workers to clear out these

Floating trash objects are very commonly seen on water bodies such as lakes, canals and rivers. With the increase of plastic goods and human activities near the water bodies, these trash objects can pile up and cause great harm to the surrounding environment. Using human workers to clear out these trash is a hazardous and time-consuming task. Employing autonomous robots for these tasks is a better approach since it is more efficient and faster than humans. However, for a robot to clean the trash objects, a good detection algorithm is required. Real-time object detection on water surfaces is a challenging issue due to nature of the environment and the volatility of the water surface. In addition to this, running an object detection algorithm on an on-board processor of a robot limits the amount of CPU consumption that the algorithm can utilize. In this thesis, a computationally low cost object detection approach for robust detection of trash objects that was run on an on-board processor of a multirotor is presented. To account for specular reflections on the water surface, we use a polarization filter and integrate a specularity removal algorithm on our approach as well. The challenges faced during testing and the means taken to eliminate those challenges are also discussed. The algorithm was compared with two other object detectors using 4 different metrics. The testing was carried out using videos of 5 different objects collected at different illumination conditions over a lake using a multirotor. The results indicate that our algorithm is much suitable to be employed in real-time since it had the highest processing speed of 21 FPS, the lowest CPU consumption of 37.5\% and considerably high precision and recall values in detecting the object.
ContributorsSyed, Danish Faraaz (Author) / Zhang, Wenlong (Thesis advisor) / Yang, Yezhou (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2021
193546-Thumbnail Image.png
Description
In the age of artificial intelligence, Machine Learning (ML) has become a pervasive force, impacting countless aspects of our lives. As ML’s influence expands, concerns about its reliability and trustworthiness have intensified, with security and robustness emerging as significant challenges. For instance, it has been demonstrated that slight perturbations to

In the age of artificial intelligence, Machine Learning (ML) has become a pervasive force, impacting countless aspects of our lives. As ML’s influence expands, concerns about its reliability and trustworthiness have intensified, with security and robustness emerging as significant challenges. For instance, it has been demonstrated that slight perturbations to a stop sign can cause ML classifiers to misidentify it as a speed limit sign, raising concerns about whether ML algorithms are suitable for real-world deployments. To tackle these issues, Responsible Machine Learning (Responsible ML) has emerged with a clear mission: to develop secure and robust ML algorithms. This dissertation aims to develop Responsible Machine Learning algorithms under real-world constraints. Specifically, recognizing the role of adversarial attacks in exposing security vulnerabilities and robustifying the ML methods, it lays down the foundation of Responsible ML by outlining a novel taxonomy of adversarial attacks within real-world settings, categorizing them into black-box target-specific, and target-agnostic attacks. Subsequently, it proposes potent adversarial attacks in each category, aiming to obtain effectiveness and efficiency. Transcending conventional boundaries, it then introduces the notion of causality into Responsible ML (a.k.a., Causal Responsible ML), presenting the causal adversarial attack. This represents the first principled framework to explain the transferability of adversarial attacks to unknown models by identifying their common source of vulnerabilities, thereby exposing the pinnacle of threat and vulnerability: conducting successful attacks on any model with no prior knowledge. Finally, acknowledging the surge of Generative AI, this dissertation explores Responsible ML for Generative AI. It introduces a novel adversarial attack that unveils their adversarial vulnerabilities and devises a strong defense mechanism to bolster the models’ robustness against potential attacks.
ContributorsMoraffah, Raha (Author) / Liu, Huan (Thesis advisor) / Yang, Yezhou (Committee member) / Xiao, Chaowei (Committee member) / Turaga, Pavan (Committee member) / Carley, Kathleen (Committee member) / Arizona State University (Publisher)
Created2024