This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

187818-Thumbnail Image.png
Description
Male reproductive dysfunction accounts for almost half of male infertility cases, yet the signaling mechanisms involved in the male reproductive system remain unclear. Although the exact cause of male reproductive dysfunction varies, obtaining a better understanding of the modulators of smooth muscle contractions may provide new targets for the treatment

Male reproductive dysfunction accounts for almost half of male infertility cases, yet the signaling mechanisms involved in the male reproductive system remain unclear. Although the exact cause of male reproductive dysfunction varies, obtaining a better understanding of the modulators of smooth muscle contractions may provide new targets for the treatment of male reproductive conditions. The male reproductive tract, consisting of the testes, epididymis, vas deferens, and penis, is lined with innervated smooth muscle fibers that transport spermatozoa through the system. Contractions of these smooth muscle fibers can be modulated by neurotransmitters and hormones, like dopamine and norepinephrine, as well as biogenic amines. The focus of this study is on the biogenic amine tyramine, which is produced by the breakdown of tyrosine via decarboxylation. Tyramine has been shown to modulate vasoconstriction and increase blood pressure due to its effect on smooth muscle contractions. This study has found that tyramine localizes in male reproductive tissues and modulates smooth muscle contractions. Age and environment were also found to play a significant role in the expression of tyramine and its associated receptor, TAAR1.
ContributorsSteadman, Solange (Author) / Baluch, Debra (Thesis advisor) / Roberson, Robert (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2023
161735-Thumbnail Image.png
Description
Lipolysis or hydrolysis of triglyceride (TG) stored within intracellular lipid droplets (LD), is vital to maintaining metabolic homeostasis in mammals. Regulation of lipolysis and subsequent utilization of liberated fatty acids impacts cellular and organismal functions including body fat accumulation and thermogenesis. Adipose triglyceride lipase (ATGL) is the intracellular rate-limiting enzyme

Lipolysis or hydrolysis of triglyceride (TG) stored within intracellular lipid droplets (LD), is vital to maintaining metabolic homeostasis in mammals. Regulation of lipolysis and subsequent utilization of liberated fatty acids impacts cellular and organismal functions including body fat accumulation and thermogenesis. Adipose triglyceride lipase (ATGL) is the intracellular rate-limiting enzyme responsible for catalyzing hydrolysis of TG to diacylglycerol (DAG), the initial step of the lipolytic reaction. G0/G1 switch gene-2 (G0S2) and hypoxia-inducible gene-2 (HIG2) are selective inhibitors of ATGL. G0S2 facilitates accumulation of TG in the liver and adipose tissue, while HIG2 functions under hypoxic conditions. Sequence analysis and mutagenesis were used to confirm the presence of conserved domains between these proteins, and that these domains are required for efficient binding and inhibition of ATGL. Further analysis revealed a Positive sequence (Pos-Seq)-LD binding motif in G0S2 but not HIG2. The Pos-Seq mediated ATGL-independent localization to LD and was required for achieving maximal inhibition of ATGL activity by G0S2. Identification and mutational analysis of this motif revealed distinct mechanisms for HIG2 and G0S2 LD association. In addition to molecular characterization of known protein inhibitors of lipolysis, an intracellular member of the apolipoprotein L (ApoL) family, ApoL6, was also identified as a LD and mitochondria associated protein expressed in adipose tissue. Brown adipose tissue uses fatty acids as fuel for increasing its energy output as heat during acute responses to cold exposure. A Comprehensive Lab Animal Monitoring System was used to compare heat production at room temperature (RT) and 4oC in transgenic animals overexpressing ApoL6 in brown adipose tissue. Overexpression of ApoL6 delayed utilization of long-chain fatty acids (LCFAs) as a fuel source while promoting an enhanced thermogenic response during initial cold exposure. ApoL6 mediated inhibition of LCFA utilization results from binding of ApoL6 to Mitochondrial Trifunctional Protein (MTP/TFP), which catalyzes mitochondrial β-oxidation. Indirect calorimetry and fasting acute cold exposure experiments suggest the augmented thermogenic profile of ApoL6 transgenic animals is a result of enhanced utilization of medium-chain fatty acids (MCFAs), glucose, and amino acids as fuel sources. Cumulatively these results indicate multiple mechanisms for regulation lipolysis and fatty acid utilization.
ContributorsCampbell, Latoya E (Author) / Lake, Douglas (Thesis advisor) / Liu, Jun (Committee member) / Folmes, Clifford (Committee member) / Sweazea, Karen (Committee member) / Baluch, Debra (Committee member) / Arizona State University (Publisher)
Created2021