This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

150387-Thumbnail Image.png
Description
The concept of vaccination dates back further than Edward Jenner's first vaccine using cowpox pustules to confer immunity against smallpox in 1796. Nevertheless, it was Jenner's success that gave vaccines their name and made vaccinia virus (VACV) of particular interest. More than 200 years later there is still the need

The concept of vaccination dates back further than Edward Jenner's first vaccine using cowpox pustules to confer immunity against smallpox in 1796. Nevertheless, it was Jenner's success that gave vaccines their name and made vaccinia virus (VACV) of particular interest. More than 200 years later there is still the need to understand vaccination from vaccine design to prediction of vaccine efficacy using mathematical models. Post-exposure vaccination with VACV has been suggested to be effective if administered within four days of smallpox exposure although this has not been definitively studied in humans. The first and second chapters analyze post-exposure prophylaxis of VACV in an animal model using v50ΔB13RMγ, a recombinant VACV expressing murine interferon gamma (IFN-γ) also known as type II IFN. While untreated animals infected with wild type VACV die by 10 days post-infection (dpi), animals treated with v50ΔB13RMγ 1 dpi had decreased morbidity and 100% survival. Despite these differences, the viral load was similar in both groups suggesting that v50ΔB13RMγ acts as an immunoregulator rather than as an antiviral. One of the main characteristics of VACV is its resistance to type I IFN, an effect primarily mediated by the E3L protein, which has a Z-DNA binding domain and a double-stranded RNA (dsRNA) binding domain. In the third chapter a VACV that independently expresses both domains of E3L was engineered and compared to wild type in cells in culture. The dual expression virus was unable to replicate in the JC murine cell line where both domains are needed together for replication. Moreover, phosphorylation of the dsRNA dependent protein kinase (PKR) was observed at late times post-infection which indicates that both domains need to be linked together in order to block the IFN response. Because smallpox has already been eradicated, the utility of mathematical modeling as a tool for predicting disease spread and vaccine efficacy was explored in the last chapter using dengue as a disease model. Current modeling approaches were reviewed and the 2000-2001 dengue outbreak in a Peruvian region was analyzed. This last section highlights the importance of interdisciplinary collaboration and how it benefits research on infectious diseases.
ContributorsHolechek, Susan A (Author) / Jacobs, Bertram L (Thesis advisor) / Castillo-Chavez, Carlos (Committee member) / Frasch, Wayne (Committee member) / Hogue, Brenda (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2011
149931-Thumbnail Image.png
Description
HIV/AIDS is the sixth leading cause of death worldwide and the leading cause of death among women of reproductive age living in low-income countries. Clinicians in industrialized nations monitor the efficacy of antiretroviral drugs and HIV disease progression with the HIV-1 viral load assay, which measures the copy number of

HIV/AIDS is the sixth leading cause of death worldwide and the leading cause of death among women of reproductive age living in low-income countries. Clinicians in industrialized nations monitor the efficacy of antiretroviral drugs and HIV disease progression with the HIV-1 viral load assay, which measures the copy number of HIV-1 RNA in blood. However, viral load assays are not widely available in sub-Saharan Africa and cost between 50-$139 USD per test on average where available. To address this problem, a mixed-methods approach was undertaken to design a novel and inexpensive viral load diagnostic for HIV-1 and to evaluate barriers to its adoption in a developing country. The assay was produced based on loop-mediated isothermal amplification (LAMP). Blood samples from twenty-one individuals were spiked with varying concentrations of HIV-1 RNA to evaluate the sensitivity and specificity of LAMP. Under isothermal conditions, LAMP was performed with an initial reverse-transcription step (RT-LAMP) and primers designed for HIV-1 subtype C. Each reaction generated up to a few billion copies of target DNA within an hour. Presence of target was detected through naked-eye observation of a fluorescent indicator and verified by DNA gel electrophoresis and real-time fluorescence. The assay successfully detected the presence of HIV in samples with a broad range of HIV RNA concentration, from over 120,000 copies/reaction to 120 copies/reaction. In order to better understand barriers to adoption of LAMP in developing countries, a feasibility study was undertaken in Tanzania, a low-income country facing significant problems in healthcare. Medical professionals in Northern Tanzania were surveyed for feedback regarding perspectives of current HIV assays, patient treatment strategies, availability of treatment, treatment priorities, HIV transmission, and barriers to adoption of the HIV-1 LAMP assay. The majority of medical providers surveyed indicated that the proposed LAMP assay is too expensive for their patient populations. Significant gender differences were observed in response to some survey questions. Female medical providers were more likely to cite stigma as a source problem of the HIV epidemic than male medical providers while males were more likely to cite lack of education as a source problem than female medical providers.
ContributorsSalamone, Damien Thomas (Author) / Jacobs, Bertram L (Thesis advisor) / Marsiglia, Flavio (Committee member) / Stout, Valerie (Committee member) / Johnson, Crista (Committee member) / Arizona State University (Publisher)
Created2011
152136-Thumbnail Image.png
Description
Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving

Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving the rates of reductive dechlorination and the growth of Dehalococcoides in mixed communities. Biostimulation of contaminated sites or microcosms with electron donor fails to consistently promote dechlorination of PCE/TCE beyond cis-dichloroethene (cis-DCE), even when the presence of Dehalococcoides is confirmed. Supported by data from microcosm experiments, I showed that the stalling at cis-DCE is due a H2 competition in which components of the soil or sediment serve as electron acceptors for competing microorganisms. However, once competition was minimized by providing selective enrichment techniques, I illustrated how to obtain both fast rates and high-density Dehalococcoides using three distinct enrichment cultures. Having achieved a heightened awareness of the fierce competition for electron donor, I then identified bicarbonate (HCO3-) as a potential H2 sink for reductive dechlorination. HCO3- is the natural buffer in groundwater but also the electron acceptor for hydrogenotrophic methanogens and homoacetogens, two microbial groups commonly encountered with Dehalococcoides. By testing a range of concentrations in batch experiments, I showed that methanogens are favored at low HCO3 and homoacetogens at high HCO3-. The high HCO3- concentrations increased the H2 demand which negatively affected the rates and extent of dechlorination. By applying the gained knowledge on microbial community management, I ran the first successful continuous stirred-tank reactor (CSTR) at a 3-d hydraulic retention time for cultivation of dechlorinating cultures. I demonstrated that using carefully selected conditions in a CSTR, cultivation of Dehalococcoides at short retention times is feasible, resulting in robust cultures capable of fast dechlorination. Lastly, I provide a systematic insight into the effect of high ammonia on communities involved in dechlorination of chloroethenes. This work documents the potential use of landfill leachate as a substrate for dechlorination and an increased tolerance of Dehalococcoides to high ammonia concentrations (2 g L-1 NH4+-N) without loss of the ability to dechlorinate TCE to ethene.
ContributorsDelgado, Anca Georgiana (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Halden, Rolf U. (Committee member) / Rittmann, Bruce E. (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
155004-Thumbnail Image.png
Description
The interaction between a virus and its host is a constant competition for supremacy. Both the virus and the host immune system constantly evolve mechanisms to circumvent one another. Vaccinia virus (VACV) infections are a prime example of this. VACV contains a highly conserved innate immune evasion gene, E3L, which

The interaction between a virus and its host is a constant competition for supremacy. Both the virus and the host immune system constantly evolve mechanisms to circumvent one another. Vaccinia virus (VACV) infections are a prime example of this. VACV contains a highly conserved innate immune evasion gene, E3L, which encodes the E3 protein composed of a Z-NA-binding domain (Z-NA BD) in the N terminus and a highly characterized dsRNA binding domain in the C-terminus. Both domains of E3 have been found to be essential for the inhibition of antiviral states initiated by host type 1 IFNs. However, the mechanism by which the Z-NA-BD of E3’s N-terminus confers IFN resistance has yet to be established. This is partially due to conflicting evidence showing that the Z-NA-BD is dispensable in most cell culture systems, yet essential for pathogenicity in mice. Recently it has been demonstrated that programmed necrosis is an alternative form of cell death that can be initiated by viral infections as part of the host’s innate immune response to control infection. The work presented here reveals that VACV has developed a mechanism to inhibit programmed necrosis. This inhibition occurs through utilizing E3’s N-terminus to prevent the initiation of programmed necrosis involving the host-encoded cellular proteins RIP3 and Z-NA-binding protein DAI. The inhibition of programmed necrosis has been shown to involve regions of both the viral and host proteins responsible for Z-NA binding through in vivo studies demonstrating that deletions of the Z-NA-BD in E3 correspond to an attenuation of pathogenicity in wild type mice that is restored in RIP3- and DAI-deficient models. Together these findings provide novel insight into the elusive function of the Z-NA-binding domain of the N-terminus and its role in preventing host recognition of viral infections. Furthermore, it is demonstrated that a unique mechanism for resisting virally induced programmed necrosis exists. This mechanism, specific to Z-NA binding, involves the inhibition of a DAI dependent form of programmed necrosis possibly by preventing host recognition of viral infections, and hints at the possible biological role of Z-NA in regulating viral infections.
ContributorsHarrington, Heather (Author) / Jacobs, Bertram L (Thesis advisor) / Langland, Jeffery O (Committee member) / Blattman, Joseph (Committee member) / Haydel, Shelly (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2016