This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 9 of 9
Filtering by

Clear all filters

152259-Thumbnail Image.png
Description
Synchronous buck converters have become the obvious choice of design for high efficiency voltage down-conversion applications and find wide scale usage in today's IC industry. The use of digital control in synchronous buck converters is becoming increasingly popular because of its associated advantages over traditional analog counterparts in terms of

Synchronous buck converters have become the obvious choice of design for high efficiency voltage down-conversion applications and find wide scale usage in today's IC industry. The use of digital control in synchronous buck converters is becoming increasingly popular because of its associated advantages over traditional analog counterparts in terms of design flexibility, reduced use of off-chip components, and better programmability to enable advanced controls. They also demonstrate better immunity to noise, enhances tolerance to the process, voltage and temperature (PVT) variations, low chip area and as a result low cost. It enables processing in digital domain requiring a need of analog-digital interfacing circuit viz. Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC). A Digital to Pulse Width Modulator (DPWM) acts as time domain DAC required in the control loop to modulate the ON time of the Power-MOSFETs. The accuracy and efficiency of the DPWM creates the upper limit to the steady state voltage ripple of the DC - DC converter and efficiency in low load conditions. This thesis discusses the prevalent architectures for DPWM in switched mode DC - DC converters. The design of a Hybrid DPWM is presented. The DPWM is 9-bit accurate and is targeted for a Synchronous Buck Converter with a switching frequency of 1.0 MHz. The design supports low power mode(s) for the buck converter in the Pulse Frequency Modulation (PFM) mode as well as other fail-safe features. The design implementation is digital centric making it robust across PVT variations and portable to lower technology nodes. Key target of the design is to reduce design time. The design is tested across large Process (+/- 3σ), Voltage (1.8V +/- 10%) and Temperature (-55.0 °C to 125 °C) and is in the process of tape-out.
ContributorsKumar, Amit (Author) / Bakkaloglu, Bertan (Thesis advisor) / Song, Hongjiang (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
152413-Thumbnail Image.png
Description
Switch mode DC/DC converters are suited for battery powered applications, due to their high efficiency, which help in conserving the battery lifetime. Fixed Frequency PWM based converters, which are generally used for these applications offer good voltage regulation, low ripple and excellent efficiency at high load currents. However at light

Switch mode DC/DC converters are suited for battery powered applications, due to their high efficiency, which help in conserving the battery lifetime. Fixed Frequency PWM based converters, which are generally used for these applications offer good voltage regulation, low ripple and excellent efficiency at high load currents. However at light load currents, fixed frequency PWM converters suffer from poor efficiencies The PFM control offers higher efficiency at light loads at the cost of a higher ripple. The PWM has a poor efficiency at light loads but good voltage ripple characteristics, due to a high switching frequency. To get the best of both control modes, both loops are used together with the control switched from one loop to another based on the load current. Such architectures are referred to as hybrid converters. While transition from PFM to PWM loop can be made by estimating the average load current, transition from PFM to PWM requires voltage or peak current sensing. This theses implements a hysteretic PFM solution for a synchronous buck converter with external MOSFET's, to achieve efficiencies of about 80% at light loads. As the PFM loop operates independently of the PWM loop, a transition circuit for automatically transitioning from PFM to PWM is implemented. The transition circuit is implemented digitally without needing any external voltage or current sensing circuit.
ContributorsVivek, Parasuram (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ogras, Umit Y. (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created2014
152170-Thumbnail Image.png
Description
Sliding-Mode Control (SMC) has several benefits over traditional Proportional-Integral-Differential (PID) control in terms of fast transient response, robustness to parameter and component variations, and low sensitivity to loop disturbances. An All-Digital Sliding-Mode (ADSM) controlled DC-DC converter, utilizing single-bit oversampled frequency domain digitizers is proposed. In the proposed approach, feedback and

Sliding-Mode Control (SMC) has several benefits over traditional Proportional-Integral-Differential (PID) control in terms of fast transient response, robustness to parameter and component variations, and low sensitivity to loop disturbances. An All-Digital Sliding-Mode (ADSM) controlled DC-DC converter, utilizing single-bit oversampled frequency domain digitizers is proposed. In the proposed approach, feedback and reference digitizing Analog-to-Digital Converters (ADC) are based on a single-bit, first order Sigma-Delta frequency to digital converter, running at 32MHz over-sampling rate. The ADSM regulator achieves 1% settling time in less than 5uSec for a load variation of 600mA. The sliding-mode controller utilizes a high-bandwidth hysteretic differentiator and an integrator to perform the sliding control law in digital domain. The proposed approach overcomes the steady state error (or DC offset), and limits the switching frequency range, which are the two common problems associated with sliding-mode controllers. The IC is designed and fabricated on a 0.35um CMOS process occupying an active area of 2.72mm-squared. Measured peak efficiency is 83%.
ContributorsDashtestani, Ahmad (Author) / Bakkaloglu, Bertan (Thesis advisor) / Thornton, Trevor (Committee member) / Song, Hongjiang (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
150208-Thumbnail Image.png
Description
Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented

Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented in this paper. The digital-intensive frequency domain approach achieves high linearity under low-supply regimes. An analog comparator and a single-bit quantizer are replaced with a Current-Controlled Oscillator- (ICO-) based frequency discriminator. By using the ICO as a phase integrator, a third-order noise shaping is achieved using only two analog integrators. A single-loop, singlebit class-D audio amplifier is presented with an H-bridge switching power stage, which is designed and fabricated on a 0.18 um CMOS process, with 6 layers of metal achieving a total harmonic distortion plus noise (THD+N) of 0.065% and a peak power efficiency of 80% while driving a 4-ohms loudspeaker load. The amplifier can deliver the output power of 280 mW.
ContributorsLee, Junghan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ozev, Sule (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created2011
150352-Thumbnail Image.png
Description
Thin film transistors (TFTs) are being used in a wide variety of applications such as image sensors, radiation detectors, as well as for use in liquid crystal displays. However, there is a conspicuous absence of interface electronics for bridging the gap between the flexible sensors and digitized displays. Hence is

Thin film transistors (TFTs) are being used in a wide variety of applications such as image sensors, radiation detectors, as well as for use in liquid crystal displays. However, there is a conspicuous absence of interface electronics for bridging the gap between the flexible sensors and digitized displays. Hence is the need to build the same. In this thesis, the feasibility of building mixed analog circuits in TFTs are explored and demonstrated. A flexible CMOS op-amp is demonstrated using a-Si:H and pentacene TFTs. The achieved performance is ¡Ö 50 dB of DC open loop gain with unity gain frequency (UGF) of 7 kHz. The op-amp is built on the popular 2 stage topology with the 2nd stage being cascoded to provide sufficient gain. A novel biasing circuit was successfully developed modifying the gm biasing circuit to retard the performance degradation as the TFTs aged. A switched capacitor 7 bit DAC was developed in only nMOS topology using a-Si:H TFTs, based on charge sharing concept. The DAC achieved a maximum differential non-linearity (DNL) of 0.6 least significant bit (LSB), while the maximum integral non-linearity (INL) was 1 LSB. TFTs were used as switches in this architecture; as a result the performance was quite unchanged even as the TFTs degraded. A 5 bit fully flash ADC was also designed using all nMOS a-Si:H TFTs. Gray coding was implemented at the output to avoid errors due to comparator meta-stability. Finally a 5 bit current steering DAC was also built using all nMOS a-Si:H TFTs. However, due to process variation, the DNL was increased to 1.2 while the INL was about 1.8 LSB. Measurements were made on the external stress effects on zinc indium oxide (ZIO) TFTs. Electrically induced stresses were studied applying DC bias on the gate and drain. These stresses shifted the device characteristics like threshold voltage and mobility. The TFTs were then mechanically stressed by stretching them across cylindrical structures of various radii. Both the subthreshold swing and mobility underwent significant changes when the stress was tensile while the change was minor under compressive stress, applied parallel to channel length.
ContributorsDey, Aritra (Author) / Allee, David R. (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Garrity, Douglas A (Committee member) / Song, Hongjiang (Committee member) / Clark, Lawrence T (Committee member) / Arizona State University (Publisher)
Created2011
150477-Thumbnail Image.png
Description
Phase locked loops are an integral part of any electronic system that requires a clock signal and find use in a broad range of applications such as clock and data recovery circuits for high speed serial I/O and frequency synthesizers for RF transceivers and ADCs. Traditionally, PLLs have been primarily

Phase locked loops are an integral part of any electronic system that requires a clock signal and find use in a broad range of applications such as clock and data recovery circuits for high speed serial I/O and frequency synthesizers for RF transceivers and ADCs. Traditionally, PLLs have been primarily analog in nature and since the development of the charge pump PLL, they have almost exclusively been analog. Recently, however, much research has been focused on ADPLLs because of their scalability, flexibility and higher noise immunity. This research investigates some of the latest all-digital PLL architectures and discusses the qualities and tradeoffs of each. A highly flexible and scalable all-digital PLL based frequency synthesizer is implemented in 180 nm CMOS process. This implementation makes use of a binary phase detector, also commonly called a bang-bang phase detector, which has potential of use in high-speed, sub-micron processes due to the simplicity of the phase detector which can be implemented with a simple D flip flop. Due to the nonlinearity introduced by the phase detector, there are certain performance limitations. This architecture incorporates a separate frequency control loop which can alleviate some of these limitations, such as lock range and acquisition time.
ContributorsZazzera, Joshua (Author) / Bakkaloglu, Bertan (Thesis advisor) / Song, Hongjiang (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
156905-Thumbnail Image.png
Description
There is an increasing demand for fully integrated point-of-load (POL) isolated DC-DC converters that can provide an isolation barrier between the primary and the secondary side, while delivering a low ripple, low noise regulated voltage at their isolated sides to a high dynamic range, sensitive mixed signal devices, such as

There is an increasing demand for fully integrated point-of-load (POL) isolated DC-DC converters that can provide an isolation barrier between the primary and the secondary side, while delivering a low ripple, low noise regulated voltage at their isolated sides to a high dynamic range, sensitive mixed signal devices, such as sensors, current-shunt-monitors and ADCs. For these applications, smaller system size and integration level is important because the whole system may need to fit to limited space. Traditional methods for providing isolated power are discrete solutions using bulky transformers. Miniaturization of isolated POL regulators is becoming highly desirable for low power applications.

A fully integrated, low noise isolated point-of-load DC-DC converter for supply regulation of high dynamic range analog and mixed signal sensor signal-chains is presented. The isolated DC-DC converter utilizes an integrated planar air-core micro-transformer as a coupled resonator and isolation barrier and enables direct connection of low-voltage mixed signal circuits to higher supply rails. The air core transformer is driven at its primary resonant frequency of 100 MHz to achieve maximum power transfer. A mixed-signal perturb-and-observe based frequency search algorithm is developed to improve maximum power transfer efficiency by 60% across the isolation barrier compared to fixed driving frequency method. The isolated converter’s output ripple is reduced by utilizing spread spectrum clocking in the driver. An isolated PMOS LDO in the secondary side is used to suppress switching noise and ripple by 21dB. Conducted and radiated EMI distribution on the IC is measured by a set of integrated ring oscillator based noise sensors with -68dBm noise sensitivity. The proposed isolated converter achieves highest level of integration with respect to earlier reported integrated isolated converters, while providing 50V on-chip junction isolation without the need for extra silicon post-processing steps.
ContributorsLiu, Chengxi (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Song, Hongjiang (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
155896-Thumbnail Image.png
Description
As wireless communication enters smartphone era, more complicated communication technologies are being used to transmit higher data rate. Power amplifier (PA) has to work in back-off region, while this inevitably reduces battery life for cellphones. Various techniques have been reported to increase PA efficiency, such as envelope elimination and restoration

As wireless communication enters smartphone era, more complicated communication technologies are being used to transmit higher data rate. Power amplifier (PA) has to work in back-off region, while this inevitably reduces battery life for cellphones. Various techniques have been reported to increase PA efficiency, such as envelope elimination and restoration (EER) and envelope tracking (ET). However, state of the art ET supply modulators failed to address high efficiency, high slew rate, and accurate tracking concurrently.

In this dissertation, a linear-switch mode hybrid ET supply modulator utilizing adaptive biasing and gain enhanced current mirror operational transconductance amplifier (OTA) with class-AB output stage in parallel with a switching regulator is presented. In comparison to a conventional OTA design with similar quiescent current consumption, proposed approach improves positive and negative slew rate from 50 V/µs to 93.4 V/µs and -87 V/µs to -152.5 V/µs respectively, dc gain from 45 dB to 67 dB while consuming same amount of quiescent current. The proposed hybrid supply modulator achieves 83% peak efficiency, power added efficiency (PAE) of 42.3% at 26.2 dBm for a 10 MHz 7.24 dB peak-to-average power ratio (PAPR) LTE signal and improves PAE by 8% at 6 dB back off from 26.2 dBm power amplifier (PA) output power with respect to fixed supply. With a 10 MHz 7.24 dB PAPR QPSK LTE signal the ET PA system achieves adjacent channel leakage ratio (ACLR) of -37.7 dBc and error vector magnitude (EVM) of 4.5% at 26.2 dBm PA output power, while with a 10 MHz 8.15 dB PAPR 64QAM LTE signal the ET PA system achieves ACLR of -35.6 dBc and EVM of 6% at 26 dBm PA output power without digital pre-distortion (DPD). The proposed supply modulator core circuit occupies 1.1 mm2 die area, and is fabricated in a 0.18 µm CMOS technology.
ContributorsJing, Yue (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Kitchen, Jennifer (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created2017
157860-Thumbnail Image.png
Description
Power management integrated circuit (PMIC) design is a key module in almost all electronics around us such as Phones, Tablets, Computers, Laptop, Electric vehicles, etc. The on-chip loads such as microprocessors cores, memories, Analog/RF, etc. requires multiple supply voltage domains. Providing these supply voltages from off-chip voltage regulators will increase

Power management integrated circuit (PMIC) design is a key module in almost all electronics around us such as Phones, Tablets, Computers, Laptop, Electric vehicles, etc. The on-chip loads such as microprocessors cores, memories, Analog/RF, etc. requires multiple supply voltage domains. Providing these supply voltages from off-chip voltage regulators will increase the overall system cost and limits the performance due to the board and package parasitics. Therefore, an on-chip fully integrated voltage regulator (FIVR) is required.

The dissertation presents a topology for a fully integrated power stage in a DC-DC buck converter achieving a high-power density and a time-domain hysteresis based highly integrated buck converter. A multi-phase time-domain comparator is proposed in this work for implementing the hysteresis control, thereby achieving a process scaling friendly highly digital design. A higher-order LC notch filter along with a flying capacitor which couples the input and output voltage ripple is implemented. The power stage operates at 500 MHz and can deliver a maximum power of 1.0 W and load current of 1.67 A, while occupying 1.21 mm2 active die area. Thus achieving a power density of 0.867 W/mm2 and current density of 1.377 A/mm2. The peak efficiency obtained is 71% at 780 mA of load current. The power stage with the additional off-chip LC is utilized to design a highly integrated current mode hysteretic buck converter operating at 180 MHz. It achieves 20 ns of settling and 2-5 ns of rise/fall time for reference tracking.

The second part of the dissertation discusses an integrated low voltage switched-capacitor based power sensor, to measure the output power of a DC-DC boost converter. This approach results in a lower complexity, area, power consumption, and a lower component count for the overall PV MPPT system. Designed in a 180 nm CMOS process, the circuit can operate with a supply voltage of 1.8 V. It achieves a power sense accuracy of 7.6%, occupies a die area of 0.0519 mm2, and consumes 0.748 mW of power.
ContributorsSingh, Shrikant (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created2019