This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

154734-Thumbnail Image.png
Description
The human motion is defined as an amalgamation of several physical traits such as bipedal locomotion, posture and manual dexterity, and mental expectation. In addition to the “positive” body form defined by these traits, casting light on the body produces a “negative” of the body: its shadow. We often interchangeably

The human motion is defined as an amalgamation of several physical traits such as bipedal locomotion, posture and manual dexterity, and mental expectation. In addition to the “positive” body form defined by these traits, casting light on the body produces a “negative” of the body: its shadow. We often interchangeably use with silhouettes in the place of shadow to emphasize indifference to interior features. In a manner of speaking, the shadow is an alter ego that imitates the individual.

The principal value of shadow is its non-invasive behaviour of reflecting precisely the actions of the individual it is attached to. Nonetheless we can still think of the body’s shadow not as the body but its alter ego.

Based on this premise, my thesis creates an experiential system that extracts the data related to the contour of your human shape and gives it a texture and life of its own, so as to emulate your movements and postures, and to be your extension. In technical terms, my thesis extracts abstraction from a pre-indexed database that could be generated from an offline data set or in real time to complement these actions of a user in front of a low-cost optical motion capture device like the Microsoft Kinect. This notion could be the system’s interpretation of the action which creates modularized art through the abstraction’s ‘similarity’ to the live action.

Through my research, I have developed a stable system that tackles various connotations associated with shadows and the need to determine the ideal features that contribute to the relevance of the actions performed. The implication of Factor Oracle [3] pattern interpretation is tested with a feature bin of videos. The system also is flexible towards several methods of Nearest Neighbours searches and a machine learning module to derive the same output. The overall purpose is to establish this in real time and provide a constant feedback to the user. This can be expanded to handle larger dynamic data.

In addition to estimating human actions, my thesis best tries to test various Nearest Neighbour search methods in real time depending upon the data stream. This provides a basis to understand varying parameters that complement human activity recognition and feature matching in real time.
ContributorsSeshasayee, Sudarshan Prashanth (Author) / Sha, Xin Wei (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Tinapple, David A (Committee member) / Arizona State University (Publisher)
Created2016
168276-Thumbnail Image.png
Description
This thesis develops geometrically and statistically rigorous foundations for multivariate analysis and bayesian inference posed on grassmannian manifolds. Requisite to the development of key elements of statistical theory in a geometric realm are closed-form, analytic expressions for many differential geometric objects, e.g., tangent vectors, metrics, geodesics, volume forms. The first

This thesis develops geometrically and statistically rigorous foundations for multivariate analysis and bayesian inference posed on grassmannian manifolds. Requisite to the development of key elements of statistical theory in a geometric realm are closed-form, analytic expressions for many differential geometric objects, e.g., tangent vectors, metrics, geodesics, volume forms. The first part of this thesis is devoted to a mathematical exposition of these. In particular, it leverages the classical work of Alan James to derive the exterior calculus of differential forms on special grassmannians for invariant measures with respect to which integration is permissible. Motivated by various multi-­sensor remote sensing applications, the second part of this thesis describes the problem of recursively estimating the state of a dynamical system propagating on the Grassmann manifold. Fundamental to the bayesian treatment of this problem is the choice of a suitable probability distribution to a priori model the state. Using the Method of Maximum Entropy, a derivation of maximum-­entropy probability distributions on the state space that uses the developed geometric theory is characterized. Statistical analyses of these distributions, including parameter estimation, are also presented. These probability distributions and the statistical analysis thereof are original contributions. Using the bayesian framework, two recursive estimation algorithms, both of which rely on noisy measurements on (special cases of) the Grassmann manifold, are the devised and implemented numerically. The first is applied to an idealized scenario, the second to a more practically motivated scenario. The novelty of both of these algorithms lies in the use of thederived maximum­entropy probability measures as models for the priors. Numerical simulations demonstrate that, under mild assumptions, both estimation algorithms produce accurate and statistically meaningful outputs. This thesis aims to chart the interface between differential geometry and statistical signal processing. It is my deepest hope that the geometric-statistical approach underlying this work facilitates and encourages the development of new theories and new computational methods in geometry. Application of these, in turn, will bring new insights and bettersolutions to a number of extant and emerging problems in signal processing.
ContributorsCrider, Lauren N (Author) / Cochran, Douglas (Thesis advisor) / Kotschwar, Brett (Committee member) / Scharf, Louis (Committee member) / Taylor, Thomas (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2021