This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

168276-Thumbnail Image.png
Description
This thesis develops geometrically and statistically rigorous foundations for multivariate analysis and bayesian inference posed on grassmannian manifolds. Requisite to the development of key elements of statistical theory in a geometric realm are closed-form, analytic expressions for many differential geometric objects, e.g., tangent vectors, metrics, geodesics, volume forms. The first

This thesis develops geometrically and statistically rigorous foundations for multivariate analysis and bayesian inference posed on grassmannian manifolds. Requisite to the development of key elements of statistical theory in a geometric realm are closed-form, analytic expressions for many differential geometric objects, e.g., tangent vectors, metrics, geodesics, volume forms. The first part of this thesis is devoted to a mathematical exposition of these. In particular, it leverages the classical work of Alan James to derive the exterior calculus of differential forms on special grassmannians for invariant measures with respect to which integration is permissible. Motivated by various multi-­sensor remote sensing applications, the second part of this thesis describes the problem of recursively estimating the state of a dynamical system propagating on the Grassmann manifold. Fundamental to the bayesian treatment of this problem is the choice of a suitable probability distribution to a priori model the state. Using the Method of Maximum Entropy, a derivation of maximum-­entropy probability distributions on the state space that uses the developed geometric theory is characterized. Statistical analyses of these distributions, including parameter estimation, are also presented. These probability distributions and the statistical analysis thereof are original contributions. Using the bayesian framework, two recursive estimation algorithms, both of which rely on noisy measurements on (special cases of) the Grassmann manifold, are the devised and implemented numerically. The first is applied to an idealized scenario, the second to a more practically motivated scenario. The novelty of both of these algorithms lies in the use of thederived maximum­entropy probability measures as models for the priors. Numerical simulations demonstrate that, under mild assumptions, both estimation algorithms produce accurate and statistically meaningful outputs. This thesis aims to chart the interface between differential geometry and statistical signal processing. It is my deepest hope that the geometric-statistical approach underlying this work facilitates and encourages the development of new theories and new computational methods in geometry. Application of these, in turn, will bring new insights and bettersolutions to a number of extant and emerging problems in signal processing.
ContributorsCrider, Lauren N (Author) / Cochran, Douglas (Thesis advisor) / Kotschwar, Brett (Committee member) / Scharf, Louis (Committee member) / Taylor, Thomas (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2021
171997-Thumbnail Image.png
Description
In the recent years, deep learning has gained popularity for its ability to be utilized for several computer vision applications without any apriori knowledge. However, to introduce better inductive bias incorporating prior knowledge along with learnedinformation is critical. To that end, human intervention including choice of algorithm, data and model

In the recent years, deep learning has gained popularity for its ability to be utilized for several computer vision applications without any apriori knowledge. However, to introduce better inductive bias incorporating prior knowledge along with learnedinformation is critical. To that end, human intervention including choice of algorithm, data and model in deep learning pipelines can be considered a prior. Thus, it is extremely important to select effective priors for a given application. This dissertation explores different aspects of a deep learning pipeline and provides insights as to why a particular prior is effective for the corresponding application. For analyzing the effect of model priors, three applications which involvesequential modelling problems i.e. Audio Source Separation, Clinical Time-series (Electroencephalogram (EEG)/Electrocardiogram(ECG)) based Differential Diagnosis and Global Horizontal Irradiance Forecasting for Photovoltaic (PV) Applications are chosen. For data priors, the application of image classification is chosen and a new algorithm titled,“Invenio” that can effectively use data semantics for both task and distribution shift scenarios is proposed. Finally, the effectiveness of a data selection prior is shown using the application of object tracking wherein the aim is to maintain the tracking performance while prolonging the battery usage of image sensors by optimizing the data selected for reading from the environment. For every research contribution of this dissertation, several empirical studies are conducted on benchmark datasets. The proposed design choices demonstrate significant performance improvements in comparison to the existing application specific state-of-the-art deep learning strategies.
ContributorsKatoch, Sameeksha (Author) / Spanias, Andreas (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Thiagarajan, Jayaraman J. (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2022