This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 21
Filtering by

Clear all filters

150051-Thumbnail Image.png
Description
The purpose of this study was to investigate the impacts of visual cues and different types of self-explanation prompts on learning, cognitive load and intrinsic motivation, as well as the potential interaction between the two factors in a multimedia environment that was designed to deliver a computer-based lesson about the

The purpose of this study was to investigate the impacts of visual cues and different types of self-explanation prompts on learning, cognitive load and intrinsic motivation, as well as the potential interaction between the two factors in a multimedia environment that was designed to deliver a computer-based lesson about the human cardiovascular system. A total of 126 college students were randomly assigned in equal numbers (N = 21) to one of the six experimental conditions in a 2 X 3 factorial design with visual cueing (visual cues vs. no cues) and type of self-explanation prompts (prediction prompts vs. reflection prompts vs. no prompts) as the between-subjects factors. They completed a pretest, subjective cognitive load questions, intrinsic motivation questions, and a posttest during the course of the experience. A subsample (49 out of 126) of the participants' eye movements were tracked by an eye tracker. The results revealed that (a) participants presented with visually cued animations had significantly higher learning outcome scores than their peers who viewed uncued animations; and (b) cognitive load and intrinsic motivation had different impacts on learning in multimedia due to the moderation effect of visual cueing. There were no other significant findings in terms of learning outcomes, cognitive load, intrinsic motivation, and eye movements. Limitations, implications and future directions are discussed within the framework of cognitive load theory, cognitive theory of multimedia learning and cognitive-affective theory of learning with media.
ContributorsLin, Lijia (Author) / Atkinson, Robert (Thesis advisor) / Nelson, Brian (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2011
149652-Thumbnail Image.png
Description
The purpose of this study was to investigate the use of the design characteristics component of the Jeffries/National League for Nursing Framework for Designing, Implementing, and Evaluating Simulations when developing a simulation-based approach to teaching structured communication to new graduate nurses. The setting for the study was a medium sized

The purpose of this study was to investigate the use of the design characteristics component of the Jeffries/National League for Nursing Framework for Designing, Implementing, and Evaluating Simulations when developing a simulation-based approach to teaching structured communication to new graduate nurses. The setting for the study was a medium sized tertiary care hospital located in the southwestern United States. Participants in the study were an instructional designer (who also served as the researcher), two graduate nursing education specialists, one unit based educator, and 27 new graduate nurses and registered nurses who had been in practice for less than six months. Design and development research was employed to examine the processes used to design the simulation, implementation of the simulation by faculty, and course evaluation data from both students and faculty. Data collected from the designer, faculty and student participants were analyzed for evidence on how the design characteristics informed the design and implementation of the course, student achievement of course goals, as well as student and faculty evaluation of the course. These data were used to identify the strengths and weaknesses of the model in this context as well as suggestions for strengthening the model. Findings revealed that the model generally functioned well in this context. Particular strengths of the model were its emphasis on problem-solving and recommendations for attending to fidelity of clinical scenarios. Weaknesses of the model were inadequate guidance for designing student preparation, student support, and debriefing. Additionally, the model does not address the role of observers or others who are not assigned the role of primary nurse during simulations. Recommendations for strengthening the model include addressing these weaknesses by incorporating existing evidence in the instructional design of experiential learning and by scaffolding students during problem-solving. The results of the study also suggested interrelationships among the design characteristics that were not previously described; further exploration of this finding may strengthen the model. Faculty and instructional designers creating clinical simulations in this context would benefit from using the Jeffries/National League for Nursing Model, adding external resources to supplement in areas where the model does not currently provide adequate guidance.
ContributorsWilson, Rebecca D (Author) / Klein, James D. (Thesis advisor) / Hagler, Debra (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2011
151688-Thumbnail Image.png
Description
This study empirically evaluated the effectiveness of the instructional design, learning tools, and role of the teacher in three versions of a semester-long, high-school remedial Algebra I course to determine what impact self-regulated learning skills and learning pattern training have on students' self-regulation, math achievement, and motivation. The 1st version

This study empirically evaluated the effectiveness of the instructional design, learning tools, and role of the teacher in three versions of a semester-long, high-school remedial Algebra I course to determine what impact self-regulated learning skills and learning pattern training have on students' self-regulation, math achievement, and motivation. The 1st version was a business-as-usual traditional classroom teaching mathematics with direct instruction. The 2rd version of the course provided students with self-paced, individualized Algebra instruction with a web-based, intelligent tutor. The 3rd version of the course coupled self-paced, individualized instruction on the web-based, intelligent Algebra tutor coupled with a series of e-learning modules on self-regulated learning knowledge and skills that were distributed throughout the semester. A quasi-experimental, mixed methods evaluation design was used by assigning pre-registered, high-school remedial Algebra I class periods made up of an approximately equal number of students to one of the three study conditions or course versions: (a) the control course design, (b) web-based, intelligent tutor only course design, and (c) web-based, intelligent tutor + SRL e-learning modules course design. While no statistically significant differences on SRL skills, math achievement or motivation were found between the three conditions, effect-size estimates provide suggestive evidence that using the SRL e-learning modules based on ARCS motivation model (Keller, 2010) and Let Me Learn learning pattern instruction (Dawkins, Kottkamp, & Johnston, 2010) may help students regulate their learning and improve their study skills while using a web-based, intelligent Algebra tutor as evidenced by positive impacts on math achievement, motivation, and self-regulated learning skills. The study also explored predictive analyses using multiple regression and found that predictive models based on independent variables aligned to student demographics, learning mastery skills, and ARCS motivational factors are helpful in defining how to further refine course design and design learning evaluations that measure achievement, motivation, and self-regulated learning in web-based learning environments, including intelligent tutoring systems.
ContributorsBarrus, Angela (Author) / Atkinson, Robert K (Thesis advisor) / Van de Sande, Carla (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
151335-Thumbnail Image.png
Description
The use of educational technologies as a tool to improve academic achievement continues to increase as more technologies becomes available to students. However, teachers are entering the classroom not fully prepared to integrate technology into their daily classroom teaching because they have not been adequately prepared to do so. Teacher

The use of educational technologies as a tool to improve academic achievement continues to increase as more technologies becomes available to students. However, teachers are entering the classroom not fully prepared to integrate technology into their daily classroom teaching because they have not been adequately prepared to do so. Teacher preparation programs are falling short in this area because educational technology and the role of technology in the classroom is seen as an extra component to daily teaching rather than a central one. Many teacher preparation programs consist of one stand-alone educational technology course that is expected to prepare teachers to integrate technology in their future classrooms. Throughout the remainder of the program, the teachers are not seeing educational technologies modeled in their other core courses, nor are they getting the hands-on interaction necessary to become more confident in using these technologies with their future students. The purpose of this study was to examine teachers' views of educational technology in the classroom from those enrolled in a graduate program. The study consisted 74 first- and second-year teachers who were enrolled an alternative teacher preparation program. Thirty-four of the teachers received the Integrating Curriculum and Technology (iCAT) intervention and the remaining 40 teachers were part of the control group. Each teacher completed a pre- and post-intervention questionnaire and 23 of the 74 teachers participated in one of three focus group interviews. Additional data from the teachers' course instructors were gathered and analyzed to compliment the focus group and quantitative data. Results showed that iCAT participants' scores for confidence in using technology and efficacy for using educational technology increased at a faster rate than the control group participants' scores. Similarly, confidence in using technology, perceptions about integrating technology in the classroom, and efficacy for using educational technology could be predicted by the amount of hands-on interaction with technology that the teachers received during their graduate course. The discussion focuses on recommendations for infusing technology throughout teacher preparation programs so that teachers have the tools to prepare their students to use a variety of technologies so that their students can be better prepared to complete in today's workforce.
ContributorsKisicki, Todd (Author) / Wetzel, Keith (Thesis advisor) / Bitter, Gary (Thesis advisor) / Buss, Ray (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2012
151999-Thumbnail Image.png
Description
Concerted efforts have been made within teacher preparation programs to integrate teaching with technology into the curriculum. Unfortunately, these efforts continue to fall short as teachers' application of educational technology is unsophisticated and not well integrated. The most prevalent approaches to integrating technology tend to ignore pedagogy and content and

Concerted efforts have been made within teacher preparation programs to integrate teaching with technology into the curriculum. Unfortunately, these efforts continue to fall short as teachers' application of educational technology is unsophisticated and not well integrated. The most prevalent approaches to integrating technology tend to ignore pedagogy and content and assume that the technology integration knowledge for all contexts is the same. One theoretical framework that does acknowledge content, pedagogy, and context in conjunction with technology is Technological Pedagogical Content Knowledge (TPACK) and was the lens through which teacher development was measured and interpreted in this study. The purpose of this study was to investigate graduate teacher education students' knowledge and practice of teaching with technology as well as how that knowledge and practice changes after participation in an educational technology course. This study used a mixed-methods sequential explanatory research design in which both quantitative and qualitative data were gathered from 82 participants. TPACK pre- and postcourse surveys were administered to a treatment group enrolled in an educational technology course and to a nonequivalent control group enrolled in a learning theories course. Additionally, pre- and postcourse lesson plans were collected from the treatment group. Select treatment group participants also participated in phone interviews. Analyses compared pre- and post-course survey response differences within and between the treatment and control groups. Pre- and postlesson plan rubric score differences were compared within the treatment group. Quantitative text analyses were performed on the collected lesson plans. Open and axial coding procedures were followed to analyze interview transcripts. The results of the study revealed five significant findings: 1) graduate students entering an educational technology course reported lower ability in constructs related to teaching with technology than in constructs related to teaching in a traditional setting; 2) TPACK was malleable and TPACK instruments were sensitive to that malleability; 3) significant gains in reported and demonstrated TPACK constructs were found after participating in an educational technology course; 4) TPACK construct ability levels vary significantly by participant characteristics; and 5) influences on teaching knowledge and practice range from internet resources, to mentor teachers, and to standardized curriculum packages.
ContributorsSabo, Kent (Author) / Atkinson, Robert (Thesis advisor) / Archambault, Leanna (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
151573-Thumbnail Image.png
Description
The gameplay experience can be understood as an interaction between player and game design characteristics. A greater understanding of these characteristics can be gained through empirical means. Subsequently, an enhanced knowledge of these characteristics should enable the creation of games that effectively generate desirable experiences for players. The purpose of

The gameplay experience can be understood as an interaction between player and game design characteristics. A greater understanding of these characteristics can be gained through empirical means. Subsequently, an enhanced knowledge of these characteristics should enable the creation of games that effectively generate desirable experiences for players. The purpose of this study was to investigate the relationships between gameplay enjoyment and the individual characteristics of gaming goal orientations, game usage, and gender. A total of 301 participants were surveyed and the data were analyzed using Structural Equation Modeling (SEM). This led to an expanded Gameplay Enjoyment Model (GEM) with 41 game features, an overarching Enjoyment factor, and 9 specific components, including Challenge, Companionship, Discovery, Fantasy, Fidelity, Identity, Multiplayer, Recognition, and Strategy. Furthermore, the 3x2 educational goal orientation framework was successfully applied to a gaming context. The resulting 3x2 Gaming Goal Orientations (GGO) model consists of 18 statements that describe players' motivations for gaming, which are distributed across the six dimensions of Task-Approach, Task-Avoidance, Self-Approach, Self-Avoidance, Other-Approach, and Other-Avoidance. Lastly, players' individual characteristics were used to predict gameplay enjoyment, which resulted in the formation of the GEM-Individual Characteristics (GEM-IC) model. In GEM-IC, the six GGO dimensions were the strongest predictors. Meanwhile, game usage variables like multiplayer, genre, and platform preference, were minimal to moderate predictors. Although commonly appearing in games research, gender and game time commitment variables failed to predict enjoyment. The results of this study enable important work to be conducted involving game experiences and player characteristics. After several empirical iterations, GEM is considered suitable to employ as a research and design tool. In addition, GGO should be useful to researchers interested in how player motivations relate to gameplay experiences. Moreover, GEM-IC points to several variables that may prove useful in future research. Accordingly, it is posited that researchers will derive more meaningful insights on games and players by investigating detailed, context-specific characteristics as compared to general, demographic ones. Ultimately, it is believed that GEM, GGO, and GEM-IC will be useful tools for researchers and designers who seek to create effective gameplay experiences that meet the needs of players.
ContributorsQuick, John (Author) / Atkinson, Robert (Thesis advisor) / McNamara, Danielle (Committee member) / Nelson, Brian (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
157411-Thumbnail Image.png
Description
Social media platforms have emerged as leading communication channels for social interaction and information sharing in the early part of the 21st century. In an ideal world, social media users should feel that they can interpret the social interactions they witness and the information that is shared on social media

Social media platforms have emerged as leading communication channels for social interaction and information sharing in the early part of the 21st century. In an ideal world, social media users should feel that they can interpret the social interactions they witness and the information that is shared on social media platforms as inherently honest and truthful; however, reality is very different. Social media platforms have become vehicles capable of spreading misinformation quickly and broadly. Information literacy offers a pathway for mitigating the negative consequences of misinformation found within various forms of content provided that instruction is contextually defined and applicable to the current information environment. A cognitive framework was used to help facilitate greater efficiency of learning information literacy practices.

The purpose of this study was to investigate the relationships between cognitive engagement and learning performance on an instructional module about misinformation on social media. A total of 133 undergraduate students participated in the study. They were surveyed for demographic characteristics, social media activity, and self-efficacy before being randomly assigned to one of four instructional conditions (passive, active, constructive, control). Additional measures included a pre-test, post-test and an instrument measuring users’ satisfaction with their instructional experience.

The study produced several statistically significant differences: (a) in the ability of demographic factors encompassing age, gender and years in college to predict the prior knowledge of misinformation on social media; (b) between the means of the three treatment and one control groups and their scores on the post-test assessment controlling for prior knowledge; and (c) between the means of the three treatment and one control groups and time necessary to complete instruction. Using a regression analysis, no significant differences were found with respect to information-focused self-efficacy factors being able to predict prior knowledge of misinformation on social media. The findings from this study can contribute to the basis of support for the use of the Interactive, Constructive, Active, Passive (ICAP) framework in assessing the use of cognitive engagement in designing instruction.
ContributorsMartinez, Tome Raymond (Author) / Atkinson, Robert (Thesis advisor) / Zuiker, Steven (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2019
156684-Thumbnail Image.png
Description
The mathematics test is the most difficult test in the GED (General Education Development) Test battery, largely due to the presence of story problems. Raising performance levels of story problem-solving would have a significant effect on GED Test passage rates. The subject of this formative research study is Ms. Stephens’

The mathematics test is the most difficult test in the GED (General Education Development) Test battery, largely due to the presence of story problems. Raising performance levels of story problem-solving would have a significant effect on GED Test passage rates. The subject of this formative research study is Ms. Stephens’ Categorization Practice Utility (MS-CPU), an example-tracing intelligent tutoring system that serves as practice for the first step (problem categorization) in a larger comprehensive story problem-solving pedagogy that purports to raise the level of story problem-solving performance. During the analysis phase of this project, knowledge components and particular competencies that enable learning (schema building) were identified. During the development phase, a tutoring system was designed and implemented that algorithmically teaches these competencies to the student with graphical, interactive, and animated utilities. Because the tutoring system provides a much more concrete rather than conceptual, learning environment, it should foster a much greater apprehension of a story problem-solving process. With this experience, the student should begin to recognize the generalizability of concrete operations that accomplish particular story problem-solving goals and begin to build conceptual knowledge and a more conceptual approach to the task. During the formative evaluation phase, qualitative methods were used to identify obstacles in the MS-CPU user interface and disconnections in the pedagogy that impede learning story problem categorization and solution preparation. The study was conducted over two iterations where identification of obstacles and change plans (mitigations) produced a qualitative data table used to modify the first version systems (MS-CPU 1.1). Mitigation corrections produced the second version of the MS-CPU 1.2, and the next iteration of the study was conducted producing a second set of obstacle/mitigation tables. Pre-posttests were conducted in each iteration to provide corroboration for the effectiveness of the mitigations that were performed. The study resulted in the identification of a number of learning obstacles in the first version of the MS-CPU 1.1. Their mitigation produced a second version of the MS-CPU 1.2 whose identified obstacles were much less than the first version. It was determined that an additional iteration is needed before more quantitative research is conducted.
ContributorsRitchey, ChristiAnne (Author) / VanLehn, Kurt (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Hong, Yi-Chun (Committee member) / Arizona State University (Publisher)
Created2018
157146-Thumbnail Image.png
Description
There has been a growing emphasis on the education of future generations of engineers who will have to tackle complex, global issues that are sociotechnical in nature. The National Science Foundation invests millions of dollars in interdisciplinary engineering education research (EER) to create an innovative and inclusive culture aimed at

There has been a growing emphasis on the education of future generations of engineers who will have to tackle complex, global issues that are sociotechnical in nature. The National Science Foundation invests millions of dollars in interdisciplinary engineering education research (EER) to create an innovative and inclusive culture aimed at radical change in the engineering education system. This exploratory research sought to better understand ways of thinking to address complex educational challenges, specifically, in the context of engineering-social sciences collaborations. The mixed methods inquiry drew on the ways of thinking perspectives from sustainability education to adapt futures, values, systems, and strategic thinking to the context of EER. Using the adapted framework, nine engineer-social scientist dyads were interviewed to empirically understand conceptualizations and applications of futures, values, systems, and strategic thinking. The qualitative results informed an original survey instrument, which was distributed to a sample of 310 researchers nationwide. Valid responses (n = 111) were analyzed to uncover the number and nature of factors underlying the scales of futures, values, systems, and strategic thinking. Findings illustrate the correlated, multidimensional nature of ways of thinking. Results from the qualitative and quantitative phases were also analyzed together to make recommendations for policy, teaching, research, and future collaborations. The current research suggested that ways of thinking, while perceived as a concept in theory, can and should be used in practice. Futures, values, systems, and strategic thinking, when used in conjunction could be an important tool for researchers to frame decisions regarding engineering education problem/solution constellations.
ContributorsDalal, Medha (Author) / Archambault, Leanna M (Thesis advisor) / Carberry, Adam (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2019
155101-Thumbnail Image.png
Description
The purpose of this study was to investigate the impacts of three types of instructional presentation methods on learning, efficiency, cognitive load, and learner attitude. A total of 67 employees of a large southwestern university working in the field of research administration were randomly assigned to one of three

The purpose of this study was to investigate the impacts of three types of instructional presentation methods on learning, efficiency, cognitive load, and learner attitude. A total of 67 employees of a large southwestern university working in the field of research administration were randomly assigned to one of three conditions. Each condition presented instructional materials using a different method, namely dynamic integrated, dynamic non-integrated, or non-dynamic non-integrated. Participants completed a short survey, pre-test, cognitive load questions, learner attitude questions, and a post-test during their experience. The results reveal that users of the dynamic integrated condition treatment showed significant improvement in both learning and efficiency. The dynamic non-integrated participants had a faster mean time to complete an assigned task, however, they also had significantly lower average test scores. There were no other significant findings in terms of cognitive load or learner attitude. Limitations, implications and future studies are discussed.
ContributorsBrown, Andrew (Author) / Nelson, Brian (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2016