This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171660-Thumbnail Image.png
Description
With an aging population, the number of later in life health related incidents like stroke stand to become more prevalent. Unfortunately, the majority those who are most at risk for debilitating heath episodes are either uninsured or under insured when it comes to long term physical/occupational therapy. As insurance companies

With an aging population, the number of later in life health related incidents like stroke stand to become more prevalent. Unfortunately, the majority those who are most at risk for debilitating heath episodes are either uninsured or under insured when it comes to long term physical/occupational therapy. As insurance companies lower coverage and/or raise prices of plans with sufficient coverage, it can be expected that the proportion of uninsured/under insured to fully insured people will rise. To address this, lower cost alternative methods of treatment must be developed so people can obtain the treated required for a sufficient recovery. The presented robotic glove employs low cost fabric soft pneumatic actuators which use a closed loop feedback controller based on readings from embedded soft sensors. This provides the device with proprioceptive abilities for the dynamic control of each independent actuator. Force and fatigue tests were performed to determine the viability of the actuator design. A Box and Block test along with a motion capture study was completed to study the performance of the device. This paper presents the design and classification of a soft robotic glove with a feedback controller as a at-home stroke rehabilitation device.
ContributorsAxman, Reed C (Author) / Zhang, Wenlong (Thesis advisor) / Santello, Marco (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2022
158505-Thumbnail Image.png
Description
The term Poly-Limb stems from the rare birth defect syndrome, called Polymelia. Although Poly-Limbs in nature have often been nonfunctional, humans have had the fascination of functional Poly-Limbs. Science fiction has led us to believe that having Poly-Limbs leads to augmented manipulation abilities and higher work efficiency. To bring this

The term Poly-Limb stems from the rare birth defect syndrome, called Polymelia. Although Poly-Limbs in nature have often been nonfunctional, humans have had the fascination of functional Poly-Limbs. Science fiction has led us to believe that having Poly-Limbs leads to augmented manipulation abilities and higher work efficiency. To bring this to life however, requires a synergistic combination between robot manipulation and wearable robotics. Where traditional robots feature precision and speed in constrained environments, the emerging field of soft robotics feature robots that are inherently compliant, lightweight, and cost effective. These features highlight the applicability of soft robotic systems to design personal, collaborative, and wearable systems such as the Soft Poly-Limb.

This dissertation presents the design and development of three actuator classes, made from various soft materials, such as elastomers and fabrics. These materials are initially studied and characterized, leading to actuators capable of various motion capabilities, like bending, twisting, extending, and contracting. These actuators are modeled and optimized, using computational models, in order to achieve the desired articulation and payload capabilities. Using these soft actuators, modular integrated designs are created for functional tasks that require larger degrees of freedom. This work focuses on the development, modeling, and evaluation of these soft robot prototypes.

In the first steps to understand whether humans have the capability of collaborating with a wearable Soft Poly-Limb, multiple versions of the Soft Poly-Limb are developed for assisting daily living tasks. The system is evaluated not only for performance, but also for safety, customizability, and modularity. Efforts were also made to monitor the position and orientation of the Soft Poly-Limbs components through embedded soft sensors and first steps were taken in developing self-powered compo-nents to bring the system out into the world. This work has pushed the boundaries of developing high powered-to-weight soft manipulators that can interact side-by-side with a human user and builds the foundation upon which researchers can investigate whether the brain can support additional limbs and whether these systems can truly allow users to augment their manipulation capabilities to improve their daily lives.
ContributorsNguyen, Pham Huy (Author) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas G. (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2020