This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

137409-Thumbnail Image.png
Description
Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to determine if the signals can be distinguished between each other and processed into output signals to trigger events in prosthetics. Results from the study suggest that the PSD estimates can be used to compare signals that have significant differences such as the wrist, scalp, and fingers, but it cannot fully distinguish between signals that are closely related, such as two different fingers. The signals that were identified were able to be translated into the physical output simulated on the Arduino circuit.
ContributorsJanis, William Edward (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
158304-Thumbnail Image.png
Description
Due to the advent of easy-to-use, portable, and cost-effective brain signal sensing devices, pervasive Brain-Machine Interface (BMI) applications using Electroencephalogram (EEG) are growing rapidly. The main objectives of these applications are: 1) pervasive collection of brain data from multiple users, 2) processing the collected data to recognize the corresponding mental

Due to the advent of easy-to-use, portable, and cost-effective brain signal sensing devices, pervasive Brain-Machine Interface (BMI) applications using Electroencephalogram (EEG) are growing rapidly. The main objectives of these applications are: 1) pervasive collection of brain data from multiple users, 2) processing the collected data to recognize the corresponding mental states, and 3) providing real-time feedback to the end users, activating an actuator, or information harvesting by enterprises for further services. Developing BMI applications faces several challenges, such as cumbersome setup procedure, low signal-to-noise ratio, insufficient signal samples for analysis, and long processing times. Internet-of-Things (IoT) technologies provide the opportunity to solve these challenges through large scale data collection, fast data transmission, and computational offloading.

This research proposes an IoT-based framework, called BraiNet, that provides a standard design methodology for fulfilling the pervasive BMI applications requirements including: accuracy, timeliness, energy-efficiency, security, and dependability. BraiNet applies Machine Learning (ML) based solutions (e.g. classifiers and predictive models) to: 1) improve the accuracy of mental state detection on-the-go, 2) provide real-time feedback to the users, and 3) save power on mobile platforms. However, BraiNet inherits security breaches of IoT, due to applying off-the-shelf soft/hardware, high accessibility, and massive network size. ML algorithms, as the core technology for mental state recognition, are among the main targets for cyber attackers. Novel ML security solutions are proposed and added to BraiNet, which provide analytical methodologies for tuning the ML hyper-parameters to be secure against attacks.

To implement these solutions, two main optimization problems are solved: 1) maximizing accuracy, while minimizing delays and power consumption, and 2) maximizing the ML security, while keeping its accuracy high. Deep learning algorithms, delay and power models are developed to solve the former problem, while gradient-free optimization techniques, such as Bayesian optimization are applied for the latter. To test the framework, several BMI applications are implemented, such as EEG-based drivers fatigue detector (SafeDrive), EEG-based identification and authentication system (E-BIAS), and interactive movies that adapt to viewers mental states (nMovie). The results from the experiments on the implemented applications show the successful design of pervasive BMI applications based on the BraiNet framework.
ContributorsSadeghi Oskooyee, Seyed Koosha (Author) / Gupta, Sandeep K S (Thesis advisor) / Santello, Marco (Committee member) / Li, Baoxin (Committee member) / Venkatasubramanian, Krishna K (Committee member) / Banerjee, Ayan (Committee member) / Arizona State University (Publisher)
Created2020