This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

136908-Thumbnail Image.png
Description
Human perceptual dimensions of sound are not necessarily simple representations of the actual physical dimensions that make up sensory input. In particular, research on the perception of interactions between acoustic frequency and intensity has shown that people exhibit a bias to expect the perception of pitch and loudness to change

Human perceptual dimensions of sound are not necessarily simple representations of the actual physical dimensions that make up sensory input. In particular, research on the perception of interactions between acoustic frequency and intensity has shown that people exhibit a bias to expect the perception of pitch and loudness to change together. Researchers have proposed that this perceptual bias occurs because sound sources tend to follow a natural regularity of a correlation between changes in intensity and frequency of sound. They postulate that the auditory system has adapted to expect this naturally occurring relationship to facilitate auditory scene analysis, the tracking and parsing sources of sound as listeners analyze their auditory environments. However, this correlation has only been tested with human speech and musical sounds. The current study explores if animal sounds also exhibit the same natural correlation between intensity and frequency and tests if people exhibit a perceptual bias to assume this correlation when listening to animal calls. Our principal hypotheses are that animal sounds will tend to exhibit a positive correlation between intensity and frequency and that, when hearing such sounds change in intensity, listeners will perceive them to also change in frequency and vice versa. Our tests with 21 animal calls and 8 control stimuli along with our experiment with participants responding to these stimuli supported these hypotheses. This research provides a further example of coupling of perceptual biases with natural regularities in the auditory domain, and provides a framework for understanding perceptual biases as functional adaptations that help perceivers more accurately anticipate and utilize reliable natural patterns to enhance scene analyses in real world environments.
ContributorsWilkinson, Zachary David (Author) / McBeath, Michael (Thesis director) / Glenberg, Arthur (Committee member) / Rutowski, Ronald (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2014-05
152844-Thumbnail Image.png
Description
For this master's thesis, a unique set of cognitive prompts, designed to be delivered through a teachable robotic agent, were developed for students using Tangible Activities for Geometry (TAG), a tangible learning environment developed at Arizona State University. The purpose of these prompts is to enhance the affordances of the

For this master's thesis, a unique set of cognitive prompts, designed to be delivered through a teachable robotic agent, were developed for students using Tangible Activities for Geometry (TAG), a tangible learning environment developed at Arizona State University. The purpose of these prompts is to enhance the affordances of the tangible learning environment and help researchers to better understand how we can design tangible learning environments to best support student learning. Specifically, the prompts explicitly encourage users to make use of their physical environment by asking students to perform a number of gestures and behaviors while prompting students about domain-specific knowledge. To test the effectiveness of these prompts that combine elements of cognition and physical movements, the performance and behavior of students who encounter these prompts while using TAG will be compared against the performance and behavior of students who encounter a more traditional set of cognitive prompts that would typically be used within a virtual learning environment. Following this study, data was analyzed using a novel modeling and analysis tool that combines enhanced log annotation using video and user model generation functionalities to highlight trends amongst students.
ContributorsThomas, Elissa (Author) / Burleson, Winslow (Thesis advisor) / Muldner, Katarzyna (Committee member) / Walker, Erin (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2014