This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 6 of 6
Filtering by

Clear all filters

136921-Thumbnail Image.png
Description
Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest

Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest in understanding electron flow in the plastoquinol pool. In order to characterize this PTOX, polyclonal antibodies were developed. Expression of Synechococcus WH8102 PTOX in E. coli provided a useful means to harvest the protein required for antibody production. Once developed, the antibody was tested for limit of concentration, effectiveness in whole cell lysate, and overall specificity. The antibody raised against PTOX was able to detect as low as 10 pg of PTOX in SDS-PAGE, and could detect PTOX extracted from lysed Synechococcus WH8102. The production of this antibody could determine the localization of the PTOX in Synechococcus.
ContributorsKhan, Mohammad Iqbal (Author) / Moore, Thomas (Thesis director) / Redding, Kevin (Committee member) / Roberson, Robert (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
135179-Thumbnail Image.png
Description
The goal of this investigation was to perform a correlational analysis of the intelligence mindsets, motivational background, and significance of gender identity as factors driving student success. 42 students enrolled in Computer Science and Engineering (CSE) 110: Principles of Programming with Java completed a modified Scientific Measurement Questionnaire (SMQ), a

The goal of this investigation was to perform a correlational analysis of the intelligence mindsets, motivational background, and significance of gender identity as factors driving student success. 42 students enrolled in Computer Science and Engineering (CSE) 110: Principles of Programming with Java completed a modified Scientific Measurement Questionnaire (SMQ), a survey instrument designed to study the previously mentioned factors. This survey was modeled on a similar survey administered by Dr. Ian Gould to students enrolled in his Organic Chemistry course at Arizona State University. Following the development of a scoring system to generate quantifiable data, it was determined that students in this course displayed a greater inclination towards beliefs in malleable intelligence and in an intrinsic locus of control as opposed to a belief in static intelligence and an external locus of control. Students exhibited a multi-faceted approach in responding to the questions in the motivational background section, indicating that there were no distinctively dominating factors driving student motivation. Instead, it was observed that students generally derived motivation from these factors in a synergistic fashion. Responses to questions regarding gender indicated that while students believed that the way they were perceived by others was significantly influenced by their gender, the notion of gender identity played little to no role in their overall personal identity and self-schema. As the study was designed to offer insight into the role of gender identity and the population discrepancies within the course, it is important to note that the findings suggest gender identity is not a primary factor of concern with regard to student performance. While the data acquired suggested potential trends in student mindsets, a notable limitation of the scope of the project was the undersized sample population.
ContributorsLevinthal, Ryan (Co-author) / Santos, Cedric (Co-author) / Gould, Ian (Thesis director) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135291-Thumbnail Image.png
Description
Acyl Carrier Protein (ACP) is a small, acidic protein that plays an essential role in fatty acid synthesis by elongating fatty acid chains. ACP was isolated from an extract of a modified strain of Synechocystis sp. PCC 6803 that contains a thioesterase and from which the acyl-ACP synthetase has been

Acyl Carrier Protein (ACP) is a small, acidic protein that plays an essential role in fatty acid synthesis by elongating fatty acid chains. ACP was isolated from an extract of a modified strain of Synechocystis sp. PCC 6803 that contains a thioesterase and from which the acyl-ACP synthetase has been deleted. Using ammonium sulfate precipitation to isolate a crude protein fraction containing ACP, immunoblot analysis was performed to determine relative amounts of free and acylated-ACP in the cell. The nature of fatty acids attached to ACP was determined by creating butylamide derivatives that were analyzed using GC/MS. Immunoblot analysis showed a roughly 1:1 ratio of acylated ACP to free ACP in the cell depending on the nutritional state of the cell. From GC/MS data it was determined that palmitic acid was the predominate component of acyl groups attached to ACP. The results indicate that there is a significant amount of acyl-ACP, a feedback inhibitor of early steps in the fatty acid biosynthesis pathway, in the cell. Moreover, the availability of free ACP may also limit fatty acid biosynthesis. Most likely it is necessary for ACP to be overexpressed or to have the palmitic acid cleaved off in order to synthesize optimal amounts of lauric acid to be used for cyanobacterial biofuel production.
ContributorsWu, Sharon Gao (Author) / Vermaas, Willem (Thesis director) / Redding, Kevin (Committee member) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

The incidence of childhood obesity has become increasingly prevalent in the United States in recent years. The development of obesity at any age, but especially in adolescence, can have lasting negative effects in the form of cardiometabolic disease, increased incurred healthcare costs, and potential negative effects on quality of life.

The incidence of childhood obesity has become increasingly prevalent in the United States in recent years. The development of obesity at any age, but especially in adolescence, can have lasting negative effects in the form of cardiometabolic disease, increased incurred healthcare costs, and potential negative effects on quality of life. In recent years, a rising trend of obesity, in both adults and adolescents, has been observed in lower income and ethnic groups. Increased adiposity can be influenced by modifiable factors -(physical activity, caloric intake, or sleep) or by non-modifiable factors (ethnicity, genetic predispositions, and socioeconomic status). The influence of these factors can be observed in individuals of all ages, including infants. A common indicator of the development of childhood obesity is rapid weight gain (RWG) within an infant’s first year of life. The composition of the gut microbiome can act as a predictor for RWG and the development of childhood obesity. Infants are exposed to an immense microbial load when they are born and their gut microbiome is continually diversified through their method of feeding and the subsequent introduction to solid foods. While currently understudied, it is understood that cultural and socioeconomic factors influence the development of the gut microbiome, which is further explored in this analysis. The DNA from 51 fecal samples from infants ranging from 3 weeks to 12 months in age was extracted and sequenced using next-generation sequencing, and the resulting sequences were analyzed using QIIME 2. Results from alpha-diversity and beta-diversity metrics showed significant differences in the gut microbiome of infants when comparing groups based on baby race/ethnicity, household income, and mom’s education. These findings suggest the importance of sociodemographic characteristics in shaping the gut microbiome and suggest the importance of future studies including diverse populations in gut microbiome work.

ContributorsGallello, Chloe (Author) / Whisner, Corrie (Thesis director) / Petrov, Megan (Committee member) / Redding, Kevin (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor)
Created2023-05
132148-Thumbnail Image.png
Description
Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs

Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs are the ocean's "forests" and are estimated to support 25% of all marine species. However, due to the large size of a coral reef, the relative inaccessibility and the reliance on in situ surveying methods, our current understanding of reefs is spatially limited. Understanding coral reefs from a more spatially complete perspective will offer insight into the ecological factors that contribute to coral reef vitality. This has become a priority in recent years due to the rapid decline of coral reefs caused by mass bleaching. Despite this urgency, being able to assess the entirety of a coral reef is physically difficult and this obstacle has not yet been overcome. However, similar difficulties have been addressed in terrestrial ecosystems by using remote sensing methods, which apply hyperspectral imaging to assess large areas of primary producers at high spatial resolutions. Adapting this method of remote spectral sensing to assess coral reefs has been suggested, but in order to quantify primary production via hyper spectral imaging, light-use efficiencies (LUEs) of coral reef communities need to be known. LUEs are estimations of the rate of carbon fixation compared to incident absorbed light. Here, I experimentally determine LUEs and report on several parameters related to LUE, namely net productivity, respiration, and light absorbance for the main primary producers in coral reefs surrounding Bermuda, which consist of algae and coral communities. The derived LUE values fall within typical ranges for LUEs of terrestrial ecosystems, with LUE values for coral averaging 0.022 ± 0.002 mol O2 mol photons-1 day-1 at a water flow rate of 17.5 ± 2 cm s^(-1) and 0.049 ± 0.011 mol O2 mol photons-1 day-1 at a flow rate of 32 ± 4 cm s^(-1) LUE values for algae averaged 0.0335 ± 0.0048 mol O2 mol photons-1 day-1 at a flow rate of 17.5 ± 2 cm s^(-1). These values allow insight into coral reef productivity and opens the door for future remote sensing applications.
ContributorsFlesher, David A (Author) / Neuer, Susanne (Thesis director) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
166232-Thumbnail Image.png
Description

This thesis is about how Fe catalysts can be degraded using photocatalysis and how Fe catalysts can degrade small molecules in conjunction with light. The goal of this paper is to look further into more sustainable methods of organic chemistry. Many current organic chemistry practices involve the use of precious

This thesis is about how Fe catalysts can be degraded using photocatalysis and how Fe catalysts can degrade small molecules in conjunction with light. The goal of this paper is to look further into more sustainable methods of organic chemistry. Many current organic chemistry practices involve the use of precious metals. Iron is a more sustainable catalyst because it is abundant and inexpensive which is important for preserving the earth and making the organic chemistry more accessible. Along the same lines, light is a renewable energy source and has demonstrated its ability to aid in reactions. Overall, the goal of this paper is to explore the more sustainable alternatives to harsh and toxic organic chemistry practices through the use of Iron and light.

ContributorsBlenker, Grace (Author) / Ackerman-Biegasiewicz, Laura (Thesis director) / Redding, Kevin (Committee member) / Biegasiewicz, Kyle (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05