This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 1 of 1
Filtering by

Clear all filters

164690-Thumbnail Image.png
Description
In algae, the Mutant Affecting Retrograde Signaling (MARS1) Kinase plays a critical role in the chloroplast unfolded protein response (cpUPR) when the chloroplast faces proteotoxic stress4. The MARS1 protein is relatively unknown in terms of structure and function. However, there has been ample research performed on the main pathway associated

In algae, the Mutant Affecting Retrograde Signaling (MARS1) Kinase plays a critical role in the chloroplast unfolded protein response (cpUPR) when the chloroplast faces proteotoxic stress4. The MARS1 protein is relatively unknown in terms of structure and function. However, there has been ample research performed on the main pathway associated with the MARS1 protein, the cpUPR. The exact mechanism of why MARS1 is necessary for the cpUPR is still unknown. Our structural and biochemical studies will help develop a better understanding of the MARS1 structure, and the role it plays in the cpUPR. The MARS1 expression construct will be assembled following the yeast golden gate (yGG) assembly protocol. Here, we will attempt to recombinantly express MARS1 kinase in Saccharomyces cerevisiae to provide insights into the protein.
ContributorsHeeres, Nicholas (Author) / Mazor, Yuval (Thesis director) / Chiu, Po Lin (Committee member) / Redding, Kevin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05