This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 8 of 8
Filtering by

Clear all filters

152968-Thumbnail Image.png
Description
Membrane proteins are a vital part of cellular structure. They are directly involved in many important cellular functions, such as uptake, signaling, respiration, and photosynthesis, among others. Despite their importance, however, less than 500 unique membrane protein structures have been determined to date. This is due to several difficulties with

Membrane proteins are a vital part of cellular structure. They are directly involved in many important cellular functions, such as uptake, signaling, respiration, and photosynthesis, among others. Despite their importance, however, less than 500 unique membrane protein structures have been determined to date. This is due to several difficulties with macromolecular crystallography, primarily the difficulty of growing large, well-ordered protein crystals. Since the first proof of concept for femtosecond nanocrystallography showing that diffraction patterns can be collected on extremely small crystals, thus negating the need to grow larger crystals, there have been many exciting advancements in the field. The technique has been proven to show high spatial resolution, thus making it a viable method for structural biology. However, due to the ultrafast nature of the technique, which allows for a lack of radiation damage in imaging, even more interesting experiments are possible, and the first temporal and spatial images of an undamaged structure could be acquired. This concept was denoted as time-resolved femtosecond nanocrystallography.

This dissertation presents on the first time-resolved data set of Photosystem II where structural changes can actually be seen without radiation damage. In order to accomplish this, new crystallization techniques had to be developed so that enough crystals could be made for the liquid jet to deliver a fully hydrated stream of crystals to the high-powered X-ray source. These changes are still in the preliminary stages due to the slightly lower resolution data obtained, but they are still a promising show of the power of this new technique. With further optimization of crystal growth methods and quality, injection technique, and continued development of data analysis software, it is only a matter of time before the ability to make movies of molecules in motion from X-ray diffraction snapshots in time exists. The work presented here is the first step in that process.
ContributorsKupitz, Christopher (Author) / Fromme, Petra (Thesis advisor) / Spence, John C. (Thesis advisor) / Redding, Kevin (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2014
152988-Thumbnail Image.png
Description
A vast amount of energy emanates from the sun, and at the distance of Earth, approximately 172,500 TW reaches the atmosphere. Of that, 80,600 TW reaches the surface with 15,600 TW falling on land. Photosynthesis converts 156 TW in the form of biomass, which represents all food/fuel for the biosphere

A vast amount of energy emanates from the sun, and at the distance of Earth, approximately 172,500 TW reaches the atmosphere. Of that, 80,600 TW reaches the surface with 15,600 TW falling on land. Photosynthesis converts 156 TW in the form of biomass, which represents all food/fuel for the biosphere with about 20 TW of the total product used by humans. Additionally, our society uses approximately 20 more TW of energy from ancient photosynthetic products i.e. fossil fuels. In order to mitigate climate problems, the carbon dioxide must be removed from the human energy usage by replacement or recycling as an energy carrier. Proposals have been made to process biomass into biofuels; this work demonstrates that current efficiencies of natural photosynthesis are inadequate for this purpose, the effects of fossil fuel replacement with biofuels is ecologically irresponsible, and new technologies are required to operate at sufficient efficiencies to utilize artificial solar-to-fuels systems. Herein a hybrid bioderived self-assembling hydrogen-evolving nanoparticle consisting of photosystem I (PSI) and platinum nanoclusters is demonstrated to operate with an overall efficiency of 6%, which exceeds that of land plants by more than an order of magnitude. The system was limited by the rate of electron donation to photooxidized PSI. Further work investigated the interactions of natural donor acceptor pairs of cytochrome c6 and PSI for the thermophilic cyanobacteria Thermosynechococcus elogantus BP1 and the red alga Galderia sulphuraria. The cyanobacterial system is typified by collisional control while the algal system demonstrates a population of prebound PSI-cytochrome c6 complexes with faster electron transfer rates. Combining the stability of cyanobacterial PSI and kinetics of the algal PSI:cytochrome would result in more efficient solar-to-fuel conversion. A second priority is the replacement of platinum with chemically abundant catalysts. In this work, protein scaffolds are employed using host-guest strategies to increase the stability of proton reduction catalysts and enhance the turnover number without the oxygen sensitivity of hydrogenases. Finally, design of unnatural electron transfer proteins are explored and may introduce a bioorthogonal method of introducing alternative electron transfer pathways in vitro or in vivo in the case of engineered photosynthetic organisms.
ContributorsVaughn, Michael David (Author) / Moore, Thomas (Thesis advisor) / Fromme, Petra (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
153167-Thumbnail Image.png
Description
The transmembrane subunit (gp41) of the envelope glycoprotein of HIV-1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR, residues 649-683) of gp41 is highly conserved and contains epitopes of broadly neutralizing

The transmembrane subunit (gp41) of the envelope glycoprotein of HIV-1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR, residues 649-683) of gp41 is highly conserved and contains epitopes of broadly neutralizing antibodies. The transmembrane (TM) domain (residues 684-705) of gp41 not only anchors the envelope glycoprotein complex in the viral membrane but also dynamically affects the interactions of the MPR with the membrane. While high-resolution X-ray structures of some segments of the MPR were solved in the past, they represent the pre-fusion and post-fusion conformations, most of which could not react with the broadly neutralizing antibodies 2F5 and 4E10. Structural information on the TM domain of gp41 is scant and at low resolution.

This thesis describes the structural studies of MPR-TM (residues 649-705) of HIV-1 gp41 by X-ray crystallography. MPR-TM was fused with different fusion proteins to improve the membrane protein overexpression. The expression level of MPR-TM was improved by fusion to the C-terminus of the Mistic protein, yielding ∼1 mg of pure MPR-TM protein per liter cell culture. The fusion partner Mistic was removed for final crystallization. The isolated MPR-TM protein was biophysically characterized and is a monodisperse candidate for crystallization. However, no crystal with diffraction quality was obtained even after extensive crystallization screens. A novel construct was designed to overexpress MPR-TM as a maltose binding protein (MBP) fusion. About 60 mg of MBP/MPR-TM recombinant protein was obtained from 1 liter of cell culture. Crystals of MBP/MPR-TM recombinant protein could not be obtained when MBP and MPR-TM were separated by a 42 amino acid (aa)-long linker but were obtained after changing the linker to three alanine residues. The crystals diffracted to 2.5 Å after crystallization optimization. Further analysis of the diffraction data indicated that the crystals are twinned. The final structure demonstrated that MBP crystallized as a dimer of trimers, but the electron density did not extend beyond the linker region. We determined by SDS-PAGE and MALDI-TOF MS that the crystals contained MBP only. The MPR-TM of gp41 might be cleaved during or after the process of crystallization. Comparison of the MBP trimer reported here with published trimeric MBP fusion structures indicated that MBP might form such a trimeric conformation under the effect of MPR-TM.
ContributorsGong, Zhen (Author) / Fromme, Petra (Thesis advisor) / Mor, Tsafrir (Thesis advisor) / Ros, Alexandra (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
156550-Thumbnail Image.png
Description
Time-resolved serial femtosecond crystallography is an emerging method that allows for structural discovery to be performed on biomacromolecules during their dynamic trajectory through a reaction pathway after activation. This is performed by triggering a reaction on an ensemble of molecules in nano- or microcrystals and then using femtosecond X-ray

Time-resolved serial femtosecond crystallography is an emerging method that allows for structural discovery to be performed on biomacromolecules during their dynamic trajectory through a reaction pathway after activation. This is performed by triggering a reaction on an ensemble of molecules in nano- or microcrystals and then using femtosecond X-ray laser pulses produced by an X-ray free electron laser to collect near-instantaneous data on the crystal. A full data set can be collected by merging a sufficient number of these patterns together and multiple data sets can be collected at different points along the reaction pathway by manipulating the delay time between reaction initiation and the probing X-rays. In this way, these ‘snapshot’ structures can be viewed in series to make a molecular movie, allowing for atomic visualization of a molecule in action and, thereby, a structural basis for the mechanism and function of a given biomacromolecule.

This dissertation presents results towards this end, including the successful implementations of the first diffusive mixing chemoactivated reactions and ultrafast dynamics in the femtosecond regime. The primary focus is on photosynthetic membrane proteins and enzymatic drug targets, in pursuit of strategies for sustainable energy and medical advancement by gaining understanding of the structure-function relationships evolved in nature. In particular, photosystem I, photosystem II, the complex of photosystem I and ferredoxin, and 3-deoxy-D-manno-2-octulosonate-8-phosphate synthase are reported on, from purification and isolation, to crystallogenesis, to experimental design and data collection and subsequent interpretation of results and novel insights gained.
ContributorsCoe, Jesse (Author) / Fromme, Petra (Thesis advisor) / Sayres, Scott (Thesis advisor) / Mujica, Vladimiro (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2018
156776-Thumbnail Image.png
Description
Over the last century, X-ray crystallography has been established as the most successful technique for unravelling the structure-function relationship in molecules. For integral membrane proteins, growing well-ordered large crystals is a challenge and hence, there is room for improving current methods of macromolecular crystallography and for exploring complimentary techniques. Since

Over the last century, X-ray crystallography has been established as the most successful technique for unravelling the structure-function relationship in molecules. For integral membrane proteins, growing well-ordered large crystals is a challenge and hence, there is room for improving current methods of macromolecular crystallography and for exploring complimentary techniques. Since protein function is deeply associated with its structural dynamics, static position of atoms in a macromolecule are insufficient to unlock the mechanism.

The availability of X-ray free electron lasers presents an opportunity to study micron-sized crystals that could be triggered (using light, small molecules or physical conditions) to capture macromolecules in action. This method of ‘Time-resolved serial crystallography’ answers key biological questions by capturing snapshots of conformational changes associated with multi-step reactions. This dissertation describes approaches for studying structures of large membrane protein complexes. Both macro and micro-seeding techniques have been implemented for improving crystal quality and obtaining high-resolution structures. Well-diffracting 15-20 micron crystals of active Photosystem II were used to perform time-resolved studies with fixed-target Roadrunner sample delivery system. By employing continuous diffraction obtained up to 2 A, significant progress can be made towards understanding the process of water oxidation.

Structure of Photosystem I was solved to 2.3 A by X-ray crystallography and to medium resolution of 4.8 A using Cryogenic electron microscopy. Using complimentary techniques to study macromolecules provides an insight into differences among methods in structural biology. This helps in overcoming limitations of one specific technique and contributes in greater knowledge of the molecule under study.
ContributorsRoy Chowdhury, Shatabdi (Author) / Fromme, Petra (Thesis advisor) / Ros, Alexandra (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2018
153728-Thumbnail Image.png
Description
Adenosine triphosphate (ATP) is the universal chemical energy currency in most living cells, used to power many cellular reactions and generated by an enzyme supercomplex known as the ATP synthase, consisting of a hydrophilic F1 subcomplex and a membrane-bound FO subcomplex. Driven by the electrochemical gradient generated by the respiratory

Adenosine triphosphate (ATP) is the universal chemical energy currency in most living cells, used to power many cellular reactions and generated by an enzyme supercomplex known as the ATP synthase, consisting of a hydrophilic F1 subcomplex and a membrane-bound FO subcomplex. Driven by the electrochemical gradient generated by the respiratory or photosynthetic electron transport chain, the rotation of the FO domain drives movements of the central stalk in response to conformational changes in the F1 domain, in which the physical energy is converted into chemical energy through the condensation of ADP and Pi to ATP. The exact mechanism how ATP synthesis is coupled to proton translocation is not known as no structure of the intact ATP-synthase nor the intact FO subcomplex has been determined to date. Structural information may shed light on these mechanisms and aid in understanding how structural changed relate to its coupling to ATP synthesis. The work in this thesis has successful established a defined large-scale CF1FO isolation procedure resulting in high purity and high yield of this complex from spinach thylakoid membranes by incorporating a unique combination of biochemical methods will form the basis for the subsequent structural determination of this complex. Isolation began from the isolation of intact chloroplasts and the separation of intact thylakoid membranes. Both native and denaturing electrophoresis analyses clearly demonstrated that the purified CF1FO retains its quaternary structure consisting of the CF1 and CFO subcomplexes and nine subunits (five F1 subunits: α, β, γ, δ and ε, and four FO subunits: a, b, b' and c). Moreover, both ATP synthesis and hydrolysis activities were successfully detected using protein reconstitution in combination with acid-base incubation and in-gel ATPase assays, respectively. Furthermore, the ATP-synthase of H. modesticaldum, an anaerobic photosynthetic bacterium, was also isolated and characterized at the biochemical level. These biochemical characterizations directly influenced recent studies on the high-resolution structure determination of intact CF1FO using electron crystallography on two-dimensional crystals. The availability of the functionally intact CF1FO purified at a large scale will lead to studies that investigate the possible crystallization conditions to ultimately determine its three-dimensional structure at atomic resolution.
ContributorsYang, Jay-How (Author) / Fromme, Petra (Thesis advisor) / Redding, Kevin (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2015
Description

Oceanic life is facing the deleterious aftermath of coral bleaching. To reverse the damages introduced by anthropological means, it is imperative to study fundamental properties of corals. One way to do so is to understand the metabolic pathways and protein functions of corals that contribute to the resilience of coral

Oceanic life is facing the deleterious aftermath of coral bleaching. To reverse the damages introduced by anthropological means, it is imperative to study fundamental properties of corals. One way to do so is to understand the metabolic pathways and protein functions of corals that contribute to the resilience of coral reefs. Although genomic sequencing and structural modeling has yielded significant insights for well-studied organisms, more investigation must be conducted for corals. Better yet, quantifiable experiments are far more crucial to the understanding of corals. The objective is to clone, purify, and assess coral proteins from the cauliflower coral species known as Pocillopora damicornis. Presented here is the pipeline for how 3-D structural modeling can help support the experimental data from studying soluble proteins in corals. Using a multi-step selection approach, 25 coral genes were selected and retrieved from the genomic database. Using Escherischia coli and Homo sapiens homologues for sequence alignment, functional properties of each protein were predicted to aid in the production of structural models. Using D-SCRIPT, potential pairwise protein-protein interactions (PPI) were predicted amongst these 25 proteins, and further studied for identifying putative interfaces using the ClusPro server. 10 binding pockets were inferred for each pair of proteins. Standard cloning strategies were applied to express 4 coral proteins for purification and functional assays. 2 of the 4 proteins had visible bands on the Coomassie stained gel and were able to advance to the purification step. Both proteins exhibited a faint band at the expected migration distance for at least one of the elutions. Finally, PPI was carried out by mixing protein samples and running in a native gel, resulting in one potential pair of PPI.

ContributorsHuang, Joe (Author) / Klein-Seetharaman, Judith (Thesis director) / Fromme, Petra (Committee member) / Redding, Kevin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
171891-Thumbnail Image.png
Description
First evolving in cyanobacteria, the light reactions of oxygenic photosynthesis are carried out by the membrane proteins, photosystem II and photosystem I, located in the thylakoid membrane. Both utilize light captured by their core antenna systems to catalyze a charge separation event at their respective reaction centers and energizes electrons

First evolving in cyanobacteria, the light reactions of oxygenic photosynthesis are carried out by the membrane proteins, photosystem II and photosystem I, located in the thylakoid membrane. Both utilize light captured by their core antenna systems to catalyze a charge separation event at their respective reaction centers and energizes electrons to be transferred energetically uphill, eventually to be stored as a high energy chemical bond. These protein complexes are highly conserved throughout different photosynthetic lineages and understanding the variations across species is vital for a complete understanding of how photosynthetic organisms can adapt to vastly different environmental conditions. Most knowledge about photosynthesis comes from only a handful of model organisms grown under laboratory conditions. Studying model organisms has facilitated major breakthroughs in understanding photosynthesis, however, due to the vast global diversity of environments where photosynthetic organisms are found, certain aspects of this process may be overlooked or missed by focusing on a select group of organisms optimized for studying in laboratory conditions. This dissertation describes the isolation of a new extremophile cyanobacteria, Cyanobacterium aponinum 0216, from the Arizona Sonoran Desert and its innate ability to grow in light intensities that exceed other model organisms. A structure guided approach was taken to investigate how the structure of photosystem I can influence the spectroscopic properties of chlorophylls, with a particular focus on long wavelength chlorophylls, in an attempt to uncover if photosystem I is responsible for high light tolerance in Cyanobacterium aponinum 0216. To accomplish this, the structure of photosystem I was solved by cryogenic electron microscopy to 2.7-anstrom resolution. By comparing the structure and protein sequences of Cyanobacterium aponinum to other model organisms, specific variations were identified and explored by constructing chimeric PSIs in the model organism Synechocystis sp. PCC 6803 to determine the effects that each specific variation causes. The results of this dissertation describe how the protein structure and composition affect the spectroscopic properties of chlorophyll molecules and the oligomeric structure of photosystem I, possibly providing an evolutionary advantage in the high light conditions observed in the Arizona Sonoran Desert.
ContributorsDobson, Zachary (Author) / Fromme, Petra (Thesis advisor) / Mazor, Yuval (Thesis advisor) / Redding, Kevin (Committee member) / Moore, Gary (Committee member) / Arizona State University (Publisher)
Created2022