This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

168483-Thumbnail Image.png
Description
All known life requires three main metabolic components to grow: an energy source, an electron source, and a carbon source. For energy, an organism can use light or chemical reactions. For electrons, an organism can use metals or organic molecules. For carbon, an organism can use organic or inorganic carbon.

All known life requires three main metabolic components to grow: an energy source, an electron source, and a carbon source. For energy, an organism can use light or chemical reactions. For electrons, an organism can use metals or organic molecules. For carbon, an organism can use organic or inorganic carbon. Life has adapted to use any mixture of the endpoints for each of the three metabolic components. Understanding how these components are incorporated in a living bacterium on Earth in modern times is relatively straight forward. This becomes much more complicated when trying to determine what metabolisms may have been used in ancient times on Earth or potential novel metabolisms that exist on other planets. One way to examine these possibilities is by creating genetically modified mutant bacteria that have novel metabolisms or proposed ancient metabolisms to study. This thesis is the beginning of a broader study to understand novel metabolisms using Heliobacteria modesticaldum. H. modesticaldum was grown under different environmental conditions to isolate the impacts of energy, electron, and carbon sources on carbon and nitrogen isotope fractionation. Additionally, the wild type and a novel mutant H. modesticaldum were compared to measure the effects of specific enzymes on carbon and nitrogen isotope fractionation. By forcing the bacterium to adapt to different conditions, variation in carbon and nitrogen content and isotopic signature are detected. Specifically, by forcing the bacterium to fix nitrogen as opposed to nitrogen incorporation, the isotopic signature of the bacterium had a noticeable change. Themutant H. modesticaldum also had a different isotopic signature than the wild type. Without the enzyme citrate synthase, H. modesticaldum had to adapt its carbon metabolic cycle, creating a measurable carbon isotope fractionation. The results described here offer new insight into the effects of metabolism on carbon and nitrogen fractionation of ancient or novel organisms.
ContributorsElms, Nicholas (Author) / Hartnett, Hilairy E (Thesis advisor) / Redding, Kevin (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Anbar, Ariel D (Committee member) / Arizona State University (Publisher)
Created2021
157775-Thumbnail Image.png
Description
Exoelectrogenic microorganisms can grow by transferring electrons from their internal metabolism to extracellular substrates in a process known as extracellular electron transfer (EET). This dissertation explores the mechanisms of EET by both chemotrophic and phototrophic organisms and constructs a novel supramolecular structure that can be used as a model for

Exoelectrogenic microorganisms can grow by transferring electrons from their internal metabolism to extracellular substrates in a process known as extracellular electron transfer (EET). This dissertation explores the mechanisms of EET by both chemotrophic and phototrophic organisms and constructs a novel supramolecular structure that can be used as a model for microbial, long-range electron transfer. Geobacter sulfurreducens has been hypothesized to secrete and use riboflavin as a soluble, extracellular redox shuttle in conjunction with multi-heme, outer membrane, c-type cytochromes, but the required proteins and their properties have not been defined. To address the mechanism of extracellular electron transfer by G. sulfurreducens, the first part of this work explores the interaction between an outer membrane, octaheme, c-type cytochrome OmcZs from G. sulfurreducens and riboflavin. Interrogation via multiple physical techniques shows that OmcZs transfers electrons to riboflavin. By analogy to other characterized systems, riboflavin then likely interacts with extracellular acceptors directly. The second part of this work addresses the mechanisms of EET by the model cyanobacterium Synechocystis sp. PCC 6803. It has been hypothesized that Synechocystis employs conductive pili for production of extracellular current. However, the results herein show that a strain that does not have pili produces extracellular photocurrent in a direct electrochemical cell at a level similar to that by wild type cells. Furthermore, conductive atomic force microscopy (AFM) imaging is used to show that pili produced by the wild type organism are not conductive. Thus, an alternative EET mechanism must be operable. In the third part of this work, a supramolecular structure comprised of peptide and cytochromes designed to serve as a model for long-range electron transfer through cytochrome rich environments is described. The c-type cytochromes in this synthetic nanowire retain their redox activity after assembly and have suitable characteristics for long-range electron transfer. Taken together, the results of this dissertation not only inform on natural microbial mechanisms for EET but also provide a starting point to develop novel, synthetic systems.
ContributorsThirumurthy, Miyuki (Author) / Jones, Anne K (Thesis advisor) / Redding, Kevin (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2019