This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

133089-Thumbnail Image.png
Description
Antiviral lectins are potential candidates for future therapies against enveloped viruses like HIV due to their ability to recognize and bind glycans displayed on their surface. Cyanovirin-N (CVN), a lectin that specifically recognizes mannose-rich moieties, serves as a useful model for studying these glycan-recognition mechanisms. This study seeks to improve

Antiviral lectins are potential candidates for future therapies against enveloped viruses like HIV due to their ability to recognize and bind glycans displayed on their surface. Cyanovirin-N (CVN), a lectin that specifically recognizes mannose-rich moieties, serves as a useful model for studying these glycan-recognition mechanisms. This study seeks to improve CVN's glycan-binding affinity by conjugating a boronic acid functional group to the N-terminus via N-terminal specific reductive alkylation by way of a benzaldehyde handle. However, large discrepancies were observed when attempting to confirm a successful conjugation, and further work is necessary to identify the causes and solutions for these issues.
ContributorsDiep, Tristan H (Author) / Ghirlanda, Giovanna (Thesis director) / Redding, Kevin (Committee member) / Mills, Jeremy (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description

Oceanic life is facing the deleterious aftermath of coral bleaching. To reverse the damages introduced by anthropological means, it is imperative to study fundamental properties of corals. One way to do so is to understand the metabolic pathways and protein functions of corals that contribute to the resilience of coral

Oceanic life is facing the deleterious aftermath of coral bleaching. To reverse the damages introduced by anthropological means, it is imperative to study fundamental properties of corals. One way to do so is to understand the metabolic pathways and protein functions of corals that contribute to the resilience of coral reefs. Although genomic sequencing and structural modeling has yielded significant insights for well-studied organisms, more investigation must be conducted for corals. Better yet, quantifiable experiments are far more crucial to the understanding of corals. The objective is to clone, purify, and assess coral proteins from the cauliflower coral species known as Pocillopora damicornis. Presented here is the pipeline for how 3-D structural modeling can help support the experimental data from studying soluble proteins in corals. Using a multi-step selection approach, 25 coral genes were selected and retrieved from the genomic database. Using Escherischia coli and Homo sapiens homologues for sequence alignment, functional properties of each protein were predicted to aid in the production of structural models. Using D-SCRIPT, potential pairwise protein-protein interactions (PPI) were predicted amongst these 25 proteins, and further studied for identifying putative interfaces using the ClusPro server. 10 binding pockets were inferred for each pair of proteins. Standard cloning strategies were applied to express 4 coral proteins for purification and functional assays. 2 of the 4 proteins had visible bands on the Coomassie stained gel and were able to advance to the purification step. Both proteins exhibited a faint band at the expected migration distance for at least one of the elutions. Finally, PPI was carried out by mixing protein samples and running in a native gel, resulting in one potential pair of PPI.

ContributorsHuang, Joe (Author) / Klein-Seetharaman, Judith (Thesis director) / Fromme, Petra (Committee member) / Redding, Kevin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05