This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 105
152134-Thumbnail Image.png
Description
Bright Summer, a one-movement piece for orchestra, was composed in Arizona, and completed in February 2013. The piece is approximately twelve minutes long. The motivation for writing this piece was the death of my mother the year before, in 2012. The prevailing mood of this work is bright and pleasant,

Bright Summer, a one-movement piece for orchestra, was composed in Arizona, and completed in February 2013. The piece is approximately twelve minutes long. The motivation for writing this piece was the death of my mother the year before, in 2012. The prevailing mood of this work is bright and pleasant, expressing my mother's cheerful personality when she was alive. It also portrays bright summer days which resemble my mother's spirit. Thus, soundscape plays an important role in this work. It depicts summer breeze, rustling sounds of leaves, and, to translate a Korean saying, "high blue skies." This soundscape opens the piece as well as closes it. In the middle section, the fast upbeat themes represent my mother's witty and optimistic personality. The piece also contains the presence of a hymn tune, The Love of God is Greater Far, which informs the motivic content and also functions as the climax of the piece. It was my mother's favorite hymn and we used to sing it together following her conversion to Christianity. The piece contains three main sections, which are held together by transitional material based on the soundscape and metric modulations. Unlike my earlier works, Bright Summer is tonal, with upper tertian harmonies prevailing throughout the piece. However, the opening and closing soundscapes do not have functional harmonies. For example, tertian chords appear and vanish silently, leaving behind some resonant sounds without any harmonic progression. Overall, the whole piece is reminiscent of my mother who lived a beautiful life.
ContributorsKim, JeeYeon (Composer) / DeMars, James (Thesis advisor) / Hackbarth, Glenn (Committee member) / Rogers, Rodney (Committee member) / Levy, Benjamin (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2013
151773-Thumbnail Image.png
Description
Norwegian composer Ola Gjeilo (b. 1978) is highly regarded as an accomplished and prolific composer of choral music. His creative output includes works for chorus, solo piano, and wind symphony. His unique style infuses elements of cinematic music, jazz and improvisation, with particularly intriguing selections of text. This study examines

Norwegian composer Ola Gjeilo (b. 1978) is highly regarded as an accomplished and prolific composer of choral music. His creative output includes works for chorus, solo piano, and wind symphony. His unique style infuses elements of cinematic music, jazz and improvisation, with particularly intriguing selections of text. This study examines the factors that influence Gjeilo's compositional techniques, and the musical interpretations of conductor Charles Bruffy in his preparation for The Phoenix Chorale's recording Northern Lights: Choral Works by Ola Gjeilo. The eleven works discussed in this study are: The Ground, Evening Prayer, Ubi caritas, Prelude, Northern Lights, The Spheres, Tota pulchra es, Serenity, Phoenix (Agnus Dei), Unicornis captivatur, and Dark Night of the Soul. As a relatively new and young composer, there is very little published literature on Gjeilo and his works. This study provides an intimate glance into the creative process of the composer. By composing in multiple styles and with a variety of inspirational sources, Gjeilo creates a fresh approach toward composition of new choral music. His style is revealed through interviews and numerous collaborations with conductors and performers who have prepared and performed his music, as well through an examination of the eleven works recorded by The Phoenix Chorale.
ContributorsGarrison, Ryan Derrick (Author) / Reber, William (Thesis advisor) / Saucier, Catherine (Committee member) / Rockmaker, Jody (Committee member) / Doan, Jerry (Committee member) / Arizona State University (Publisher)
Created2013
151610-Thumbnail Image.png
Description
This thesis presents a new arrangement of Richard Peaslee's trombone solo "Arrows of Time" for brass band. This arrangement adapts Peaslee's orchestration - and subsequent arrangement by Dr. Joshua Hauser for wind ensemble - for the modern brass band instrumentation and includes a full score. A brief biography of Richard

This thesis presents a new arrangement of Richard Peaslee's trombone solo "Arrows of Time" for brass band. This arrangement adapts Peaslee's orchestration - and subsequent arrangement by Dr. Joshua Hauser for wind ensemble - for the modern brass band instrumentation and includes a full score. A brief biography of Richard Peaslee and his work accompanies this new arrangement, along with commentary on the orchestration of "Arrows of Time", and discussion of the evolution and adaptation of the work for wind ensemble by Dr. Hauser. The methodology used to adapt these versions for the brass band completes the background information.
ContributorsMalloy, Jason Patrick (Author) / Ericson, John (Thesis advisor) / Oldani, Robert (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2013
152405-Thumbnail Image.png
Description
The German pianist and composer Johannes Brahms (1883-1897) wrote more than 122 works for a wide variety of ensembles and genres. Despite this remarkable productivity, and his widely heralded talent for innovation and technique as a composer, few of his works have been arranged for solo guitar, and these have

The German pianist and composer Johannes Brahms (1883-1897) wrote more than 122 works for a wide variety of ensembles and genres. Despite this remarkable productivity, and his widely heralded talent for innovation and technique as a composer, few of his works have been arranged for solo guitar, and these have focused primarily on his simpler, more melodic works. Conventional wisdom is that his music is "too dense" to be played on the guitar. As a result, there are no arrangements of orchestral works by Brahms in the standard repertoire for the guitar. In arranging Brahms's Serenade in D Major, movt. 1 for the guitar, I provide a counter argument that not all of Brahms's orchestral music is too dense all of the time. In Part I, I provide a brief overview of the history of, and sources for, the Serenade. Part II describes a step-by-step guide through the process of arranging orchestral repertoire for the solo guitar. Part III is an examination of the editing process that utilizes examples from the guitar arrangement of the Serenade in order to illustrate the various techniques and considerations that are part of the editing process. Part IV is a performance edition of the arrangement. In summary, the present arrangement of Brahms's Serenade, op.11 is the beginning of a conversation about why the "guitar world" should be incorporating the music of Brahms into the standard repertoire. The lessons learned, and the technical challenges discovered, should help inform future arrangers and guitar performers for additional compositions by Brahms.
ContributorsLanier, William Hudson (Author) / Koonce, Frank (Thesis advisor) / Micklich, Albie (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2013
152555-Thumbnail Image.png
Description
Nelson Rolihlahla Mandela was born July 18, 1918 into the Madiba clan in Mvezo, Transkei, South Africa. Mandela was a lawyer by trade and a freedom fighter who envisioned freedom and equality for all South Africans regardless of race. In 1965, Mandela was imprisoned at Robben Island for twenty-seven years

Nelson Rolihlahla Mandela was born July 18, 1918 into the Madiba clan in Mvezo, Transkei, South Africa. Mandela was a lawyer by trade and a freedom fighter who envisioned freedom and equality for all South Africans regardless of race. In 1965, Mandela was imprisoned at Robben Island for twenty-seven years for treason and terrorist activities against the South African apartheid regime: he was assigned prison numbers 46664. In 1992, Mandela was released from prison and two years later not only became the first democratically elected president of South Africa, but also its first black president. "Madiba 46664" is an eight-minute chamber work scored for flute, oboe, clarinet in B-flat, and bassoon; vibraphone, and two percussionists; piano; violins, violas, and celli. The work blends traditional South African rhythms of the drumming culture with elements of Western harmony and form in contrasting textures of homophony, polyphony and antiphony. "Madiba 46664" utilizes Mandela's prison number, birthdate and age (at the time the composition process began in 2013) for the initial generation of meter, rhythm, harmony, melody, and form. The work also shares intercultural concepts that can be seen in the works of three contemporary African composers, South Africans Jeanne Zaidel-Rudolph and Andile Khumalo, and Nigerian Ayo Oluranti. Each section represents a period of Mandela's life as a freedom fighter, a prisoner, and a president. The inspiration stems from the composer's discussions with Mandela soon after his release from prison and prior to his presidency. These lively discussions pertained to the state of traditional music in then apartheid South Africa and led to this creation. The conversations also played a role in the creative process.
ContributorsMabingnai, Collette Sipho (Composer) / DeMars, James (Thesis advisor) / Hackbarth, Glenn (Committee member) / Humphreys, Jere (Committee member) / Rockmaker, Jody (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2014
152754-Thumbnail Image.png
Description
Preservation Symphony is a short, multi-movement, orchestral composition that explores the versatility of the [016] pitch class set as the dominant unifying force of this cyclical work. The composition is scored for Piccolo, two Flutes, two Oboes, English Horn, two Clarinets, Bass Clarinet, full complement of Brass, Timpani, two Percussionists,

Preservation Symphony is a short, multi-movement, orchestral composition that explores the versatility of the [016] pitch class set as the dominant unifying force of this cyclical work. The composition is scored for Piccolo, two Flutes, two Oboes, English Horn, two Clarinets, Bass Clarinet, full complement of Brass, Timpani, two Percussionists, and Strings. Movement one is in sonata form; the [016] set is used in structuring its overall formal scheme. The primary focus of the movement is on the tritone [0 6] as a replacement for the traditional tonic and dominant polarity. The movement features a driving force that alternates between pulse subdivisions of even sixteenth notes and sixteenth-note triplets. Movement two is in simple binary form with a central tonality of A. An English Horn solo functions as both the opening of the movement and a transition from the tonality of movement one (F) into the new tonal center of A. The unifying pitch class set [016] is used in this movement in a Phrygian context. Movement two has a contemplative and dark tone, which is in stark contrast to the outer movements. Movement three has a lighter, upbeat nature. The movement is in rondo form with its main theme written in a folk-like character. This movement returns to F as the central tonality, completing the overall tonal plan of the work. As in movement one, it explores the tritone polarity of F and B. The movement also revisits the chromatic mediant relationship found in the middle of movement two in the oboes. The pitch class set is now used in the context of a Lydian-Mixolydian (or acoustic) scale, from which both the central and secondary themes of the rondo are derived.
ContributorsKemp, Tyler (Composer) / Rogers, Rodney (Thesis advisor) / DeMars, James (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2014
152968-Thumbnail Image.png
Description
Membrane proteins are a vital part of cellular structure. They are directly involved in many important cellular functions, such as uptake, signaling, respiration, and photosynthesis, among others. Despite their importance, however, less than 500 unique membrane protein structures have been determined to date. This is due to several difficulties with

Membrane proteins are a vital part of cellular structure. They are directly involved in many important cellular functions, such as uptake, signaling, respiration, and photosynthesis, among others. Despite their importance, however, less than 500 unique membrane protein structures have been determined to date. This is due to several difficulties with macromolecular crystallography, primarily the difficulty of growing large, well-ordered protein crystals. Since the first proof of concept for femtosecond nanocrystallography showing that diffraction patterns can be collected on extremely small crystals, thus negating the need to grow larger crystals, there have been many exciting advancements in the field. The technique has been proven to show high spatial resolution, thus making it a viable method for structural biology. However, due to the ultrafast nature of the technique, which allows for a lack of radiation damage in imaging, even more interesting experiments are possible, and the first temporal and spatial images of an undamaged structure could be acquired. This concept was denoted as time-resolved femtosecond nanocrystallography.

This dissertation presents on the first time-resolved data set of Photosystem II where structural changes can actually be seen without radiation damage. In order to accomplish this, new crystallization techniques had to be developed so that enough crystals could be made for the liquid jet to deliver a fully hydrated stream of crystals to the high-powered X-ray source. These changes are still in the preliminary stages due to the slightly lower resolution data obtained, but they are still a promising show of the power of this new technique. With further optimization of crystal growth methods and quality, injection technique, and continued development of data analysis software, it is only a matter of time before the ability to make movies of molecules in motion from X-ray diffraction snapshots in time exists. The work presented here is the first step in that process.
ContributorsKupitz, Christopher (Author) / Fromme, Petra (Thesis advisor) / Spence, John C. (Thesis advisor) / Redding, Kevin (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2014
152880-Thumbnail Image.png
Description
The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine

The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V for a current density of 1 mA/cm2 at pH 11. The production of molecular oxygen at a high potential was verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. This Ni species can achieve a current density of 4 mA/cm2 that persists for at least 10 hours. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalysis is an electron-proton coupled process. In addition, to investigate the binding of divalent metals to proteins, four peptides were designed and synthesized with carboxylate and histidine ligands. The binding of the metals was characterized by monitoring the metal-induced changes in circular dichroism spectra. Cyclic voltammetry demonstrated that bound copper underwent a Cu(I)/Cu(II) oxidation/reduction change at a potential of approximately 0.32 V in a quasi-reversible process. The relative binding affinity of Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) to the peptides is correlated with the stability constants of the Irving-Williams series for divalent metal ions. A potential application of these complexes of transition metals with amino acids or peptides is in the development of artificial photosynthetic cells.
ContributorsWang, Dong (Author) / Allen, James P. (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
152974-Thumbnail Image.png
Description
Cyanovirin-N (CVN) is a cyanobacterial lectin with potent anti-HIV activity, mediated by binding to the N-linked oligosaccharide moiety of the envelope protein gp120. CVN offers a scaffold to develop multivalent carbohydrate-binding proteins with tunable specificities and affinities. I present here biophysical calculations completed on a monomeric-stabilized mutant of cyanovirin-N, P51G-m4-CVN,

Cyanovirin-N (CVN) is a cyanobacterial lectin with potent anti-HIV activity, mediated by binding to the N-linked oligosaccharide moiety of the envelope protein gp120. CVN offers a scaffold to develop multivalent carbohydrate-binding proteins with tunable specificities and affinities. I present here biophysical calculations completed on a monomeric-stabilized mutant of cyanovirin-N, P51G-m4-CVN, in which domain A binding activity is abolished by four mutations; with comparisons made to CVNmutDB, in which domain B binding activity is abolished. Using Monte Carlo calculations and docking simulations, mutations in CVNmutDB were considered singularly, and the mutations E41A/G and T57A were found to impact the affinity towards dimannose the greatest. 15N-labeled proteins were titrated with Manα(1-2)Manα, while following chemical shift perturbations in NMR spectra. The mutants, E41A/G and T57A, had a larger Kd than P51G-m4-CVN, matching the trends predicted by the calculations. We also observed that the N42A mutation affects the local fold of the binding pocket, thus removing all binding to dimannose. Characterization of the mutant N53S showed similar binding affinity to P51G-m4-CVN. Using biophysical calculations allows us to study future iterations of models to explore affinities and specificities. In order to further elucidate the role of multivalency, I report here a designed covalent dimer of CVN, Nested cyanovirin-N (Nested CVN), which has four binding sites. Nested CVN was found to have comparable binding affinity to gp120 and antiviral activity to wt CVN. These results demonstrate the ability to create a multivalent, covalent dimer that has comparable results to that of wt CVN.

WW domains are small modules consisting of 32-40 amino acids that recognize proline-rich peptides and are found in many signaling pathways. We use WW domain sequences to explore protein folding by simulations using Zipping and Assembly Method. We identified five crucial contacts that enabled us to predict the folding of WW domain sequences based on those contacts. We then designed a folded WW domain peptide from an unfolded WW domain sequence by introducing native contacts at those critical positions.
ContributorsWoodrum, Brian William (Author) / Ghirlanda, Giovanna (Thesis advisor) / Redding, Kevin (Committee member) / Wang, Xu (Committee member) / Arizona State University (Publisher)
Created2014
152988-Thumbnail Image.png
Description
A vast amount of energy emanates from the sun, and at the distance of Earth, approximately 172,500 TW reaches the atmosphere. Of that, 80,600 TW reaches the surface with 15,600 TW falling on land. Photosynthesis converts 156 TW in the form of biomass, which represents all food/fuel for the biosphere

A vast amount of energy emanates from the sun, and at the distance of Earth, approximately 172,500 TW reaches the atmosphere. Of that, 80,600 TW reaches the surface with 15,600 TW falling on land. Photosynthesis converts 156 TW in the form of biomass, which represents all food/fuel for the biosphere with about 20 TW of the total product used by humans. Additionally, our society uses approximately 20 more TW of energy from ancient photosynthetic products i.e. fossil fuels. In order to mitigate climate problems, the carbon dioxide must be removed from the human energy usage by replacement or recycling as an energy carrier. Proposals have been made to process biomass into biofuels; this work demonstrates that current efficiencies of natural photosynthesis are inadequate for this purpose, the effects of fossil fuel replacement with biofuels is ecologically irresponsible, and new technologies are required to operate at sufficient efficiencies to utilize artificial solar-to-fuels systems. Herein a hybrid bioderived self-assembling hydrogen-evolving nanoparticle consisting of photosystem I (PSI) and platinum nanoclusters is demonstrated to operate with an overall efficiency of 6%, which exceeds that of land plants by more than an order of magnitude. The system was limited by the rate of electron donation to photooxidized PSI. Further work investigated the interactions of natural donor acceptor pairs of cytochrome c6 and PSI for the thermophilic cyanobacteria Thermosynechococcus elogantus BP1 and the red alga Galderia sulphuraria. The cyanobacterial system is typified by collisional control while the algal system demonstrates a population of prebound PSI-cytochrome c6 complexes with faster electron transfer rates. Combining the stability of cyanobacterial PSI and kinetics of the algal PSI:cytochrome would result in more efficient solar-to-fuel conversion. A second priority is the replacement of platinum with chemically abundant catalysts. In this work, protein scaffolds are employed using host-guest strategies to increase the stability of proton reduction catalysts and enhance the turnover number without the oxygen sensitivity of hydrogenases. Finally, design of unnatural electron transfer proteins are explored and may introduce a bioorthogonal method of introducing alternative electron transfer pathways in vitro or in vivo in the case of engineered photosynthetic organisms.
ContributorsVaughn, Michael David (Author) / Moore, Thomas (Thesis advisor) / Fromme, Petra (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014