This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 19
Filtering by

Clear all filters

152177-Thumbnail Image.png
Description
Manufacture of building materials requires significant energy, and as demand for these materials continues to increase, the energy requirement will as well. Offsetting this energy use will require increased focus on sustainable building materials. Further, the energy used in building, particularly in heating and air conditioning, accounts for 40 percent

Manufacture of building materials requires significant energy, and as demand for these materials continues to increase, the energy requirement will as well. Offsetting this energy use will require increased focus on sustainable building materials. Further, the energy used in building, particularly in heating and air conditioning, accounts for 40 percent of a buildings energy use. Increasing the efficiency of building materials will reduce energy usage over the life time of the building. Current methods for maintaining the interior environment can be highly inefficient depending on the building materials selected. Materials such as concrete have low thermal efficiency and have a low heat capacity meaning it provides little insulation. Use of phase change materials (PCM) provides the opportunity to increase environmental efficiency of buildings by using the inherent latent heat storage as well as the increased heat capacity. Incorporating PCM into concrete via lightweight aggregates (LWA) by direct addition is seen as a viable option for increasing the thermal storage capabilities of concrete, thereby increasing building energy efficiency. As PCM change phase from solid to liquid, heat is absorbed from the surroundings, decreasing the demand on the air conditioning systems on a hot day or vice versa on a cold day. Further these materials provide an additional insulating capacity above the value of plain concrete. When the temperature drops outside the PCM turns back into a solid and releases the energy stored from the day. PCM is a hydrophobic material and causes reductions in compressive strength when incorporated directly into concrete, as shown in previous studies. A proposed method for mitigating this detrimental effect, while still incorporating PCM into concrete is to encapsulate the PCM in aggregate. This technique would, in theory, allow for the use of phase change materials directly in concrete, increasing the thermal efficiency of buildings, while negating the negative effect on compressive strength of the material.
ContributorsSharma, Breeann (Author) / Neithalath, Narayanan (Thesis advisor) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2013
152043-Thumbnail Image.png
Description
The main objective of this study is to investigate the mechanical behaviour of cementitious based composites subjected dynamic tensile loading, with effects of strain rate, temperature, addition of short fibres etc. Fabric pullout model and tension stiffening model based on finite difference model, previously developed at Arizona State University were

The main objective of this study is to investigate the mechanical behaviour of cementitious based composites subjected dynamic tensile loading, with effects of strain rate, temperature, addition of short fibres etc. Fabric pullout model and tension stiffening model based on finite difference model, previously developed at Arizona State University were used to help study the bonding mechanism between fibre and matrix, and the phenomenon of tension stiffening due to the addition of fibres and textiles. Uniaxial tension tests were conducted on strain-hardening cement-based composites (SHCC), textile reinforced concrete (TRC) with and without addition of short fibres, at the strain rates ranging from 25 s-1 to 100 s-1. Historical data on quasi-static tests of same materials were used to demonstrate the effects including increases in average tensile strength, strain capacity, work-to-fracture due to high strain rate. Polyvinyl alcohol (PVA), glass, polypropylene were employed as reinforcements of concrete. A state-of-the-art phantom v7 high speed camera was setup to record the video at frame rate of 10,000 fps. Random speckle pattern of texture style was made on the surface of specimens for image analysis. An optical non-contacting deformation measurement technique referred to as digital image correlation (DIC) method was used to conduct the image analysis by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-filed strain distribution, strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and corrected the stress-strain responses.
ContributorsYao, Yiming (Author) / Barzin, Mobasher (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2013
151987-Thumbnail Image.png
Description
Properties of random porous material such as pervious concrete are strongly dependant on its pore structure features. This research deals with the development of an understanding of the relationship between the material structure and the mechanical and functional properties of pervious concretes. The fracture response of pervious concrete specimens proportioned

Properties of random porous material such as pervious concrete are strongly dependant on its pore structure features. This research deals with the development of an understanding of the relationship between the material structure and the mechanical and functional properties of pervious concretes. The fracture response of pervious concrete specimens proportioned for different porosities, as a function of the pore structure features and fiber volume fraction, is studied. Stereological and morphological methods are used to extract the relevant pore structure features of pervious concretes from planar images. A two-parameter fracture model is used to obtain the fracture toughness (KIC) and critical crack tip opening displacement (CTODc) from load-crack mouth opening displacement (CMOD) data of notched beams under three-point bending. The experimental results show that KIC is primarily dependent on the porosity of pervious concretes. For a similar porosity, an increase in pore size results in a reduction in KIC. At similar pore sizes, the effect of fibers on the post-peak response is more prominent in mixtures with a higher porosity, as shown by the residual load capacity, stress-crack extension relationships, and GR curves. These effects are explained using the mean free spacing of pores and pore-to-pore tortuosity in these systems. A sensitivity analysis is employed to quantify the influence of material design parameters on KIC. This research has also focused on studying the relationship between permeability and tortuosity as it pertains to porosity and pore size of pervious concretes. Various ideal geometric shapes were also constructed that had varying pore sizes and porosities. The pervious concretes also had differing pore sizes and porosities. The permeabilities were determined using three different methods; Stokes solver, Lattice Boltzmann method and the Katz-Thompson equation. These values were then compared to the tortuosity values determined using a Matlab code that uses a pore connectivity algorithm. The tortuosity was also determined from the inverse of the conductivity determined from a numerical analysis that was necessary for using the Katz-Thompson equation. These tortuosity values were then compared to the permeabilities. The pervious concretes and ideal geometric shapes showed consistent similarities betbetween their tortuosities and permeabilities.
ContributorsRehder, Benjamin (Author) / Neithalath, Narayanana (Thesis advisor) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2013
151435-Thumbnail Image.png
Description
The main objective of this study is to develop an innovative system in the form of a sandwich panel type composite with textile reinforced skins and aerated concrete core. Existing theoretical concepts along with extensive experimental investigations were utilized to characterize the behavior of cement based systems in the presence

The main objective of this study is to develop an innovative system in the form of a sandwich panel type composite with textile reinforced skins and aerated concrete core. Existing theoretical concepts along with extensive experimental investigations were utilized to characterize the behavior of cement based systems in the presence of individual fibers and textile yarns. Part of this thesis is based on a material model developed here in Arizona State University to simulate experimental flexural response and back calculate tensile response. This concept is based on a constitutive law consisting of a tri-linear tension model with residual strength and a bilinear elastic perfectly plastic compression stress strain model. This parametric model was used to characterize Textile Reinforced Concrete (TRC) with aramid, carbon, alkali resistant glass, polypropylene TRC and hybrid systems of aramid and polypropylene. The same material model was also used to characterize long term durability issues with glass fiber reinforced concrete (GFRC). Historical data associated with effect of temperature dependency in aging of GFRC composites were used. An experimental study was conducted to understand the behavior of aerated concrete systems under high stain rate impact loading. Test setup was modeled on a free fall drop of an instrumented hammer using three point bending configuration. Two types of aerated concrete: autoclaved aerated concrete (AAC) and polymeric fiber-reinforced aerated concrete (FRAC) were tested and compared in terms of their impact behavior. The effect of impact energy on the mechanical properties was investigated for various drop heights and different specimen sizes. Both materials showed similar flexural load carrying capacity under impact, however, flexural toughness of fiber-reinforced aerated concrete was proved to be several degrees higher in magnitude than that provided by plain autoclaved aerated concrete. Effect of specimen size and drop height on the impact response of AAC and FRAC was studied and discussed. Results obtained were compared to the performance of sandwich beams with AR glass textile skins with aerated concrete core under similar impact conditions. After this extensive study it was concluded that this type of sandwich composite could be effectively used in low cost sustainable infrastructure projects.
ContributorsDey, Vikram (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2012
152649-Thumbnail Image.png
Description
The demand for portland cement concrete is expected to increase over time. There is a need to develop a more sustainable cementitious systems in order to reduce the negative environmental impacts associated with ordinary portland cement (OPC) production. An attempt is made to investigate sustainable binder solutions through the use

The demand for portland cement concrete is expected to increase over time. There is a need to develop a more sustainable cementitious systems in order to reduce the negative environmental impacts associated with ordinary portland cement (OPC) production. An attempt is made to investigate sustainable binder solutions through the use of alternative cementitious materials at high levels of volume replacement. Limestone, an abundant material is used as a filler in low water-to-powder concretes where a substantial fraction of the portland cement remains unhydrated. At high volume OPC replacement, 20% and 35%, the combination of limestone and an alumina source has been shown to improve mechanical and durability performance. At 20% OPC replacement levels the migration coefficient which is an indication of chloride penetration in concrete is lower than the OPC control mixture at 28 and 56 days of hydration. The use of limestone with a similar particle size distribution to that of the OPC is used in each of these blended systems. A 20% binary limestone blend provide similar strength to an OPC mortar at all ages and comparable transport properties to that of the OPC concrete. Fly ash and metakaolin are the two alumina sources for the ternary blended mixes with concrete. The metakaolin shows the highest increase in the amount of hydration products formed out of all the mixes, including calcium-silicate-hydrate and carboaluminate phases in combination with limestone powder. At both levels of replacement the metakaolin blends show a substantially lower migration coefficient which is contributed to the smaller pore sizes found in the metakaolin blends. The fracture response of these systems show that at all replacement levels the ductility of the systems increase indicated by the large critical crack tip opening displacement. The fracture toughness is the highest for the blend containing metakaolin indicative of the smaller pore sizes allowing more dissipation of energy. An attempt is made to relate all mechanical and durability parameters to the reaction products and pore-structure developing at later ages.
ContributorsAguayo, Matthew (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2014
152640-Thumbnail Image.png
Description
As more and more stadia structures nowadays are being built by making use of new high strength building materials which tend to be lighter than the "old" ones, composite systems and also the fact that engineers, contractors and clients want their structures as optimized as possible, in terms of minimal

As more and more stadia structures nowadays are being built by making use of new high strength building materials which tend to be lighter than the "old" ones, composite systems and also the fact that engineers, contractors and clients want their structures as optimized as possible, in terms of minimal materials used, there is an inevitable side effect that comes with this. The result is that structures are more flexible, and thus they become susceptible to undergone vibration problems due to the action of dynamic loading. Pop/rock concerts, exhibitions, boxing matches, and so forth are staged to supplement the football/sport seasons. Consequently, stadia structures must resist not only static loading, but also dynamic loading, such as the human induced loads from various activities of the spectators which include, standing, jumping, stamping, clapping and dancing, particularly in response to touchdowns (in football matches) or musical beats (during concerts). Active and passive models of humans are studied to see how they influence the response in TCF Bank Stadium for different ranges in excitation frequencies, by performing dynamic analyses and comparing the results with the ones obtained from static analysis. Parameter estimation and system identification in mechanical sciences and structural engineering have become increasingly important areas of research in the last three decades. Many nondestructive testing methods are based on the concepts of system identification and parameter estimation. In this document, two parameter estimation algorithms are studied, namely the Equation Error Estimator and the Output Error Estimator, through the simulation of modal data obtained from a computer structural analysis program and comparisons of their results are presented so that future researchers are better informed about the two and therefore can decide which one would give the best results for their application.
ContributorsAldaco Lopez, Manuel (Author) / Hjelmstad, Keith D. (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Fafitis, Apostolos (Committee member) / Arizona State University (Publisher)
Created2014
153430-Thumbnail Image.png
Description
In this thesis, the author described a new genetic algorithm based on the idea: the better design could be found at the neighbor of the current best design. The details of the new genetic algorithm are described, including the rebuilding process from Micro-genetic algorithm and the different crossover and mutation

In this thesis, the author described a new genetic algorithm based on the idea: the better design could be found at the neighbor of the current best design. The details of the new genetic algorithm are described, including the rebuilding process from Micro-genetic algorithm and the different crossover and mutation formation.

Some popular examples, including two variable function optimization and simple truss models are used to test this algorithm. In these study, the new genetic algorithm is proved able to find the optimized results like other algorithms.

Besides, the author also tried to build one more complex truss model. After tests, the new genetic algorithm can produce a good and reasonable optimized result. Form the results, the rebuilding, crossover and mutation can the jobs as designed.

At last, the author also discussed two possible points to improve this new genetic algorithm: the population size and the algorithm flexibility. The simple result of 2D finite element optimization showed that the effectiveness could be better, with the improvement of these two points.
ContributorsDing, Xiaosu (Author) / Hjelmstad, Keith (Thesis advisor) / Neithalath, Narayanan (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2015
152894-Thumbnail Image.png
Description
Buildings and other structures, all components and cladding thereof, shall be designed and constructed to resist the wind loads are required in all wind codes. Simple quasi-static treatment of wind loads, which is universally applied to design of low to medium-rise structures, can be either overly conservative or erroneous under-estimated

Buildings and other structures, all components and cladding thereof, shall be designed and constructed to resist the wind loads are required in all wind codes. Simple quasi-static treatment of wind loads, which is universally applied to design of low to medium-rise structures, can be either overly conservative or erroneous under-estimated for design of high-rise structures. Dynamic response, vortex, wind directionality, and shedding from other structures are all complicated key factors suppose to be considered in design. Meanwhile, wind tunnel testing is expansive, difficult and sometimes inaccurate even if it is a widely used method in simulation of aerodynamic response. Computational Fluid dynamics (CFD), historically, were two-dimensional (2D) method using conformal transformations of the flow about a cylinder to the flow about an airfoil were developed in the 1930s. A number of three-dimensional (3D) codes were developed, leading to numerous commercial packages, which is more accessible and economical for wind load analysis.
ContributorsZhu, Xitong (Author) / Hjelmstad, Keith D. (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Fafitis, Apostolos (Committee member) / Arizona State University (Publisher)
Created2014
153025-Thumbnail Image.png
Description
The studies on aluminosilicate materials to replace traditional construction materials such as ordinary Portland cement(OPC) to reduce the effects caused has been an important research area for the past decades. Many properties like strength have already been studied and the primary focus is to learn about the reaction mechanism and

The studies on aluminosilicate materials to replace traditional construction materials such as ordinary Portland cement(OPC) to reduce the effects caused has been an important research area for the past decades. Many properties like strength have already been studied and the primary focus is to learn about the reaction mechanism and the effect of the parameters on the formed products. The aim of this research was to explore the structural changes and reaction product analysis of geopolymers (Slag & Fly Ash) using Fourier transform infrared spectroscopy (FTIR) and deconvolution

techniques. Spectroscopic techniques give valuable information at a molecular level but not all methods are economic and simple. To understand the mechanisms of alkali activated aluminosilicate materials, attenuated total reflectance (ATR) FTIR has been used where the effect of the parameters on the reaction products have been analyzed. To analyze complex systems like geopolymers using FTIR, deconvolution techniques help to obtain the properties of a particular peak attributed to a certain molecular vibration.

Time and temperature dependent analysis were done on slag pastes to understand the polymerization of reactive silica in the system with time and temperature variance. For time dependent analysis slag has been activated with sodium and potassium silicates using two different `n'values and three different silica modulus [Ms- (SiO2 /M2O)] values. The temperature dependent analysis was done by curing the samples at 60C and 80C. Similarly fly ash has been studied by activating with alkali hydroxides and alkali silicates. Under the same curing conditions the fly ash samples were evaluated to analyze the effects of added silicates for alkali activation.

The peak shifts in the FTIR explains the changes in the structural nature of the matrix and can be identified using the deconvolution technique. A strong correlation is found between the concentrations of silicate monomer in the activating position of the main Si-O-T (where T is Al/Si) stretching band in the FTIR spectrum, which

gives an indication of the relative changes in the Si/Al ratio. Also, the effect of the cation and silicate concentration in the activating solution has been discussed using the Fourier self deconvolution technique.
ContributorsMadavarapu, Sateesh Babu (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Marzke, Robert (Committee member) / Arizona State University (Publisher)
Created2014
150448-Thumbnail Image.png
Description
Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility

Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility and reduces the propagation of cracks in the concrete structure. It is the fibers that bridge the crack and dissipate the incurred strain energy in the form of a fiber-pullout mechanism. The addition of fibers plays an important role in tunnel lining systems and in reducing shrinkage cracking in high performance concretes. The interest in most design situations is the load where cracking first takes place. Typically the post crack response will exhibit either a load bearing increase as deflection continues, or a load bearing decrease as deflection continues. These behaviors are referred to as strain hardening and strain softening respectively. A strain softening or hardening response is used to model the behavior of different types of fiber reinforced concrete and simulate the experimental flexural response. Closed form equations for moment-curvature response of rectangular beams under four and three point loading in conjunction with crack localization rules are utilized. As a result, the stress distribution that considers a shifting neutral axis can be simulated which provides a more accurate representation of the residual strength of the fiber cement composites. The use of typical residual strength parameters by standards organizations ASTM, JCI and RILEM are examined to be incorrect in their linear elastic assumption of FRC behavior. Finite element models were implemented to study the effects and simulate the load defection response of fiber reinforced shotcrete round discrete panels (RDP's) tested in accordance with ASTM C-1550. The back-calculated material properties from the flexural tests were used as a basis for the FEM material models. Further development of FEM beams were also used to provide additional comparisons in residual strengths of early age samples. A correlation between the RDP and flexural beam test was generated based a relationship between normalized toughness with respect to the newly generated crack surfaces. A set of design equations are proposed using a residual strength correction factor generated by the model and produce the design moment based on specified concrete slab geometry.
ContributorsBarsby, Christopher (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2011