This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 5 of 5
Filtering by

Clear all filters

148031-Thumbnail Image.png
Description

Forensic entomology is an important field of forensic science that utilizes insect evidence in criminal investigations. Blow flies (Diptera: Calliphoridae) are among the first colonizers of remains and are therefore frequently used in determining the minimum postmortem interval (mPMI). Blow fly development, however, is influenced by a variety of factors

Forensic entomology is an important field of forensic science that utilizes insect evidence in criminal investigations. Blow flies (Diptera: Calliphoridae) are among the first colonizers of remains and are therefore frequently used in determining the minimum postmortem interval (mPMI). Blow fly development, however, is influenced by a variety of factors including temperature and feeding substrate type. Unfortunately, dietary fat content remains an understudied factor on the development process, which is problematic given the relatively high rates of obesity in the United States. To study the effects of fat content on blow fly development we investigated the survivorship, adult weight and development of Lucilia sericata (Meigen; Diptera: Calliphoridae) and Phormia regina (Meigen; Diptera: Calliphoridae) on ground beef with a 10%, 20%, or 27% fat content. As fat content increased, survivorship decreased across both species with P. regina being significantly impacted. While P. regina adults were generally larger than L. sericata across all fat levels, only L. sericata demonstrated a significant (P < 0.05) difference in weight by sex. Average total development times for P. regina are comparable to averages published in other literature. Average total development times for L. sericata, however, were nearly 50 hours higher. These findings provide insight on the effect of fat content on blow fly development, a factor that should be considered when estimating a mPMI. By understanding how fat levels affect the survivorship and development of the species studied here, we can begin improving the practice of insect evidence analysis in casework.

ContributorsNoblesse, Andrew (Author) / Weidner, Lauren (Thesis director) / Parrott, Jonathan (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
133735-Thumbnail Image.png
Description
Pharmacokinetics describes the movement and processing of a drug in a body, while Pharmacodynamics describes the drug's effect on a given subject. Pharmacokinetic/Pharmacodynamic(Pk/Pd) models have become a fundamental tool when predicting bacterial behavior and drug development. In November of 2009, Katsube et al. published their paper detailing their Pk/Pd model

Pharmacokinetics describes the movement and processing of a drug in a body, while Pharmacodynamics describes the drug's effect on a given subject. Pharmacokinetic/Pharmacodynamic(Pk/Pd) models have become a fundamental tool when predicting bacterial behavior and drug development. In November of 2009, Katsube et al. published their paper detailing their Pk/Pd model for the drug Doripenem and the bacteria P. aeruginosa. In their paper, they determined that there is a dependent relationship between the drug's effectiveness and the dosing strategy of the drug. Therefore, this thesis has applied optimal control in order to optimize the drug's effectiveness, while not burdening the subject with the side effects of the drug. Optimal Control is a mathematical tool used to balance two competing factors. As a result, it has become a useful tool used to make decisions involving complex behavior. By using Optimal Control, the model will maximize the drug's effect on the bacterial population of P. aeruginosa, while minimizing the drug concentration of Doripenem. In doing so, our research will enable doctors and clinicians to maximize a drug's effectiveness on the body, while minimizing side effects.
ContributorsSawkins, Bryan Thomas (Author) / Camacho, Erika (Thesis director) / Wirkus, Stephen (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134351-Thumbnail Image.png
Description
The retina is the lining in the back of the eye responsible for vision. When light photons hits the retina, the photoreceptors within the retina respond by sending impulses to the optic nerve, which connects to the brain. If there is injury to the eye or heredity retinal problems, this

The retina is the lining in the back of the eye responsible for vision. When light photons hits the retina, the photoreceptors within the retina respond by sending impulses to the optic nerve, which connects to the brain. If there is injury to the eye or heredity retinal problems, this part can become detached. Detachment leads to loss of nutrients, such as oxygen and glucose, to the cells in the eye and causes cell death. Sometimes the retina is able to be surgically reattached. If the photoreceptor cells have not died and the reattachment is successful, then these cells are able to regenerate their outer segments (OS) which are essential for their functionality and vitality. In this work we will explore how the regrowth of the photoreceptor cells in a healthy eye after retinal detachment can lead to a deeper understanding of how eye cells take up nutrients and regenerate. This work uses a mathematical model for a healthy eye in conjunction with data for photoreceptors' regrowth and decay. The parameters for the healthy eye model are estimated from the data and the ranges of these parameter values are centered +/- 10\% away from these values are used for sensitivity analysis. Using parameter estimation and sensitivity analysis we can better understand how certain processes represented by these parameters change within the model as a result of retinal detachment. Having a deeper understanding for any sort of photoreceptor death and growth can be used by the greater scientific community to help with these currently irreversible conditions that lead to blindness, such as retinal detachment. The analysis in this work shows that maximizing the carrying capacity of the trophic pool and the rate of RDCVF, as well as minimizing nutrient withdrawal of the rods and the cones from the trophic pool results in both the most regrowth and least cell death in retinal detachment.
ContributorsGoldman, Miriam Ayla (Author) / Camacho, Erikia (Thesis director) / Wirkus, Stephen (Committee member) / School of Mathematical and Natural Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description

This outlines a mathematical model created in MATLAB for the purposes of predicting nitrous oxide emissions from wastewater treatment plants with updated an updated understanding of AOB metabolic pathway.

ContributorsOverbey, Jorja (Author) / Hart, Steven (Thesis director) / Young, Michelle (Committee member) / Wirkus, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Music, Dance and Theatre (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2023-05
186601-Thumbnail Image.png
Description

As Arizona State University moves toward virtual classroom accessibility and the fortification of education for all students around the globe (ASU Online), we must continue to develop and cultivate creative resources to bring STEM laboratory activities to those who do not have access to the resources found in many classrooms.

As Arizona State University moves toward virtual classroom accessibility and the fortification of education for all students around the globe (ASU Online), we must continue to develop and cultivate creative resources to bring STEM laboratory activities to those who do not have access to the resources found in many classrooms. Online science degree programs face a particular challenge, as laboratory activities must be reformatted and rethought for virtual application. ASU has recently launched an online Forensic Science major, and the ability to identify and analyze evidence at a crime scene is one of the most important skills a student-investigator can learn. The development of creative ways to address instruction in a virtual crime scene is essential to the success of this and similar programs. Through the process of identifying evidence, students can hone their critical thinking skills, as they are required to assess scenarios and decide which evidence is pertinent to a given case. By making decisions regarding the packaging of identified evidence, students learn important steps in any forensic job, such as chain of custody, the effects of material packaging on evidence preservation, and the ramifications of incorrect evidence handling. Currently, there are several virtual crime scene programs available for purchase (Crime Scenes Meet Virtual Reality | St. Edward’s University in Austin, Texas). These programs offer activities such as those described above, yet they present a financial hurdle and are not customizable for specific courses or environments. Through the use of Google Slides, this project yielded an accessible and easily replicable interactive learning experience. The project resulted in a virtual crime scene that was both intuitive and integrative of generally novice technological resources such as Google Enterprise. Clickable photo slides were constructed using the linked shape imagery tools on Google Slides in order to provide an immersive learning experience.

ContributorsHughes, Ally (Author) / Bolhofner, Katelyn (Thesis director) / Parrott, Jonathan (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2023-05