This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 80
152085-Thumbnail Image.png
Description
Synechocystis sp PCC 6803 is a photosynthetic cyanobacterium that can be easily transformed to produce molecules of interest; this has increased Synechocystis’ popularity as a clean energy platform. Synechocystis has been shown to produce and excrete molecules such as fatty acids, isoprene, etc. after appropriate genetic modification. Challenges faced for

Synechocystis sp PCC 6803 is a photosynthetic cyanobacterium that can be easily transformed to produce molecules of interest; this has increased Synechocystis’ popularity as a clean energy platform. Synechocystis has been shown to produce and excrete molecules such as fatty acids, isoprene, etc. after appropriate genetic modification. Challenges faced for large–scale growth of modified Synechocystis include abiotic stress, microbial contamination and high processing costs of product and cell material. Research reported in this dissertation contributes to solutions to these challenges. First, abiotic stress was addressed by overexpression of the heat shock protein ClpB1. In contrast to the wild type, the ClpB1 overexpression mutant (Slr1641+) tolerated rapid temperature changes, but no difference was found between the strains when temperature shifts were slower. Combination of ClpB1 overexpression with DnaK2 overexpression (Slr1641+/Sll0170+) further increased thermotolerance. Next, we used a Synechocystis strain that carries an introduced isoprene synthase gene (IspS+) and that therefore produces isoprene. We attempted to increase isoprene yields by overexpression of key enzymes in the methyl erythritol phosphate (MEP) pathway that leads to synthesis of the isoprene precursor. Isoprene production was not increased greatly by MEP pathway induction, likely because of limitations in the affinity of the isoprene synthase for the substrate. Finally, two extraction principles, two–phase liquid extraction (e.g., with an organic and aqueous phase) and solid–liquid extraction (e.g., with a resin) were tested. Two–phase liquid extraction is suitable for separating isoprene but not fatty acids from the culture medium. Fatty acid removal required acidification or surfactant addition, which affected biocompatibility. Therefore, improvements of both the organism and product–harvesting methods can contribute to enhancing the potential of cyanobacteria as solar–powered biocatalysts for the production of petroleum substitutes.
ContributorsGonzalez Esquer, Cesar Raul (Author) / Vermaas, Willem (Thesis advisor) / Chandler, Douglas (Committee member) / Bingham, Scott (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2013
151860-Thumbnail Image.png
Description
Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal

Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal in both men and women. Developing new drugs for the treatment of cancer is both a slow and expensive process. It is estimated that it takes an average of 15 years and an expense of $800 million to bring a single new drug to the market. However, it is also estimated that nearly 40% of that cost could be avoided by finding alternative uses for drugs that have already been approved by the Food and Drug Administration (FDA). The research presented in this document describes the testing, identification, and mechanistic evaluation of novel methods for treating many human carcinomas using drugs previously approved by the FDA. A tissue culture plate-based screening of FDA approved drugs will identify compounds that can be used in combination with the protein TRAIL to induce apoptosis selectively in cancer cells. Identified leads will next be optimized using high-throughput microfluidic devices to determine the most effective treatment conditions. Finally, a rigorous mechanistic analysis will be conducted to understand how the FDA-approved drug mitoxantrone, sensitizes cancer cells to TRAIL-mediated apoptosis.
ContributorsTaylor, David (Author) / Rege, Kaushal (Thesis advisor) / Jayaraman, Arul (Committee member) / Nielsen, David (Committee member) / Kodibagkar, Vikram (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2013
152004-Thumbnail Image.png
Description
To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their

To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their microbiology and electrochemistry, much is still unknown about the mechanism of electron transfer to the anode. To this end, this thesis seeks to elucidate the complexities of electron transfer existing in Geobacter sulfurreducens biofilms by employing Electrochemical Impedance Spectroscopy (EIS) as the tool of choice. Experiments measuring EIS resistances as a function of growth were used to uncover the potential gradients that emerge in biofilms as they grow and become thicker. While a better understanding of this model ARB is sought, electrochemical characterization of a halophile, Geoalkalibacter subterraneus (Glk. subterraneus), revealed that this organism can function as an ARB and produce seemingly high current densities while consuming different organic substrates, including acetate, butyrate, and glycerol. The importance of identifying and studying novel ARB for broader MXC applications was stressed in this thesis as a potential avenue for tackling some of human energy problems.
ContributorsAjulo, Oluyomi (Author) / Torres, Cesar (Thesis advisor) / Nielsen, David (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Popat, Sudeep (Committee member) / Arizona State University (Publisher)
Created2013
152504-Thumbnail Image.png
Description
Alzheimer's disease (AD) is the most common type of dementia, affecting one in nine people age 65 and older. One of the most important neuropathological characteristics of Alzheimer's disease is the aggregation and deposition of the protein beta-amyloid. Beta-amyloid is produced by proteolytic processing of the Amyloid Precursor Protein (APP).

Alzheimer's disease (AD) is the most common type of dementia, affecting one in nine people age 65 and older. One of the most important neuropathological characteristics of Alzheimer's disease is the aggregation and deposition of the protein beta-amyloid. Beta-amyloid is produced by proteolytic processing of the Amyloid Precursor Protein (APP). Production of beta-amyloid from APP is increased when cells are subject to stress since both APP and beta-secretase are upregulated by stress. An increased beta-amyloid level promotes aggregation of beta-amyloid into toxic species which cause an increase in reactive oxygen species (ROS) and a decrease in cell viability. Therefore reducing beta-amyloid generation is a promising method to control cell damage following stress. The goal of this thesis was to test the effect of inhibiting beta-amyloid production inside stressed AD cell model. Hydrogen peroxide was used as stressing agent. Two treatments were used to inhibit beta-amyloid production, including iBSec1, an scFv designed to block beta-secretase site of APP, and DIA10D, a bispecific tandem scFv engineered to cleave alpha-secretase site of APP and block beta-secretase site of APP. iBSec1 treatment was added extracellularly while DIA10D was stably expressed inside cell using PSECTAG vector. Increase in reactive oxygen species and decrease in cell viability were observed after addition of hydrogen peroxide to AD cell model. The increase in stress induced toxicity caused by addition of hydrogen peroxide was dramatically decreased by simultaneously treating the cells with iBSec1 or DIA10D to block the increase in beta-amyloid levels resulting from the upregulation of APP and beta-secretase.
ContributorsSuryadi, Vicky (Author) / Sierks, Michael (Thesis advisor) / Nielsen, David (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2014
152814-Thumbnail Image.png
Description
Many therapeutics administered for some of the most devastating illnesses can be toxic and result in unwanted side effects. Recent developments have been made in an alternative treatment method, called gene therapy. Gene therapy has potential to rectify the genetic defects that cause a broad range of diseases. Many diseases,

Many therapeutics administered for some of the most devastating illnesses can be toxic and result in unwanted side effects. Recent developments have been made in an alternative treatment method, called gene therapy. Gene therapy has potential to rectify the genetic defects that cause a broad range of diseases. Many diseases, such as cancer, cystic fibrosis, and acquired immunodeficiency (AIDS) already have gene therapy protocols that are currently in clinical trials. Finding a non-toxic and efficient gene transfer method has been a challenge. Viral vectors are effective at transgene delivery however potential for insertion mutagenesis and activation of immune responses raises concern. For this reason, non-viral vectors have been investigated as a safer alternative to viral-mediated gene delivery. Non-viral vectors are also easy to prepare and scalable, but are limited by low transgene delivery efficacies and high cytotoxicity at effective therapeutic dosages. Thus, there is a need for a non-toxic non-viral vector with high transgene efficacies. In addition to the hurdles in finding a material for gene delivery, large-scale production of pharmaceutical grade DNA for gene therapy is needed. Current methods can be labor intensive, time consuming, and use toxic chemicals. For this reason, an efficient and safe method to collect DNA is needed. One material that is currently being explored is the hydrogel. Hydrogels are a useful subclass of biomaterials, with a wide variety of applications. This class of biomaterials can carry up to a thousand times their weight in water, and are biocompatible. At smaller dimensions, referred to as micro- and nanogels, they are very useful for many biomedical applications because of their size and ability to swell. Based on a previously synthesized hydrogel, and due to the advantages of smaller dimension in biomedical applications, we have synthesized aminoglycoside antibiotic based nanogels and microgels. Microgels and nanogels were synthesized following a ring opening polymerization of epoxide-containing crosslinkers and polyamine-containing monomers. The nanogels were screened for their cytocompatibilities and transfection efficacies, and were compared to polyethylenimine (PEI), a current standard for polymer-mediated transgene delivery. Nanogels demonstrated minimal to no toxicity to the cell line used in the study even at high concentrations. Due to the emerging need for large-scale production of DNA, microgels were evaluated for their binding capacity to plasmid DNA. Future work with the aminoglycoside antibiotic-based nanogels and microgels developed in this study will involve optimization of nanogels and microgels to facilitate in better transgene delivery and plasmid DNA binding, respectively.
ContributorsMallik, Amrita Amy (Author) / Rege, Kaushal (Thesis advisor) / Dai, Lennore (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2014
152968-Thumbnail Image.png
Description
Membrane proteins are a vital part of cellular structure. They are directly involved in many important cellular functions, such as uptake, signaling, respiration, and photosynthesis, among others. Despite their importance, however, less than 500 unique membrane protein structures have been determined to date. This is due to several difficulties with

Membrane proteins are a vital part of cellular structure. They are directly involved in many important cellular functions, such as uptake, signaling, respiration, and photosynthesis, among others. Despite their importance, however, less than 500 unique membrane protein structures have been determined to date. This is due to several difficulties with macromolecular crystallography, primarily the difficulty of growing large, well-ordered protein crystals. Since the first proof of concept for femtosecond nanocrystallography showing that diffraction patterns can be collected on extremely small crystals, thus negating the need to grow larger crystals, there have been many exciting advancements in the field. The technique has been proven to show high spatial resolution, thus making it a viable method for structural biology. However, due to the ultrafast nature of the technique, which allows for a lack of radiation damage in imaging, even more interesting experiments are possible, and the first temporal and spatial images of an undamaged structure could be acquired. This concept was denoted as time-resolved femtosecond nanocrystallography.

This dissertation presents on the first time-resolved data set of Photosystem II where structural changes can actually be seen without radiation damage. In order to accomplish this, new crystallization techniques had to be developed so that enough crystals could be made for the liquid jet to deliver a fully hydrated stream of crystals to the high-powered X-ray source. These changes are still in the preliminary stages due to the slightly lower resolution data obtained, but they are still a promising show of the power of this new technique. With further optimization of crystal growth methods and quality, injection technique, and continued development of data analysis software, it is only a matter of time before the ability to make movies of molecules in motion from X-ray diffraction snapshots in time exists. The work presented here is the first step in that process.
ContributorsKupitz, Christopher (Author) / Fromme, Petra (Thesis advisor) / Spence, John C. (Thesis advisor) / Redding, Kevin (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2014
152880-Thumbnail Image.png
Description
The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine

The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V for a current density of 1 mA/cm2 at pH 11. The production of molecular oxygen at a high potential was verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. This Ni species can achieve a current density of 4 mA/cm2 that persists for at least 10 hours. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalysis is an electron-proton coupled process. In addition, to investigate the binding of divalent metals to proteins, four peptides were designed and synthesized with carboxylate and histidine ligands. The binding of the metals was characterized by monitoring the metal-induced changes in circular dichroism spectra. Cyclic voltammetry demonstrated that bound copper underwent a Cu(I)/Cu(II) oxidation/reduction change at a potential of approximately 0.32 V in a quasi-reversible process. The relative binding affinity of Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) to the peptides is correlated with the stability constants of the Irving-Williams series for divalent metal ions. A potential application of these complexes of transition metals with amino acids or peptides is in the development of artificial photosynthetic cells.
ContributorsWang, Dong (Author) / Allen, James P. (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
152838-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) is used in the chemical process sector to compare the environmental merits of different product or process alternatives. One of the tasks that involves much time and cost in LCA studies is the specification of the exact materials and processes modeled which has limited its widespread

Life Cycle Assessment (LCA) is used in the chemical process sector to compare the environmental merits of different product or process alternatives. One of the tasks that involves much time and cost in LCA studies is the specification of the exact materials and processes modeled which has limited its widespread application. To overcome this, researchers have recently created probabilistic underspecification as an LCA streamlining method, which uses a structured data classification system to enable an LCA modeler to specify materials and processes in a less precise manner. This study presents a statistical procedure to understand when streamlined LCA methods can be used, and what their impact on overall model uncertainty is. Petrochemicals and polymer product systems were chosen to examine the impacts of underspecification and mis-specification applied to LCA modeling. Ecoinvent database, extracted using GaBi software, was used for data pertaining to generic crude oil refining and polymer manufacturing modules. By assessing the variation in LCA results arising out of streamlined materials classification, the developed statistics estimate the amount of overall error incurred by underspecifying and mis-specifying material impact data in streamlined LCA. To test the impact of underspecification and mis-specification at the level of a product footprint, case studies of HDPE containers and aerosol air fresheners were conducted. Results indicate that the variation in LCA results decreases as the specificity of materials increases. For the product systems examined, results show that most of the variability in impact assessment is due to the differences in the regions from which the environmental impact datasets were collected; the lower levels of categorization of materials have relatively smaller influence on the variance. Analyses further signify that only certain environmental impact categories viz. global warming potential, freshwater eutrophication, freshwater ecotoxicity, human toxicity and terrestrial ecotoxicity are affected by geographic variations. Outcomes for the case studies point out that the error in the estimation of global warming potential increases as the specificity of a component of the product decreases. Fossil depletion impact estimates remain relatively robust to underspecification. Further, the results of LCA are much more sensitive to underspecification of materials and processes than mis-specification.
ContributorsMurali, Ashwin Krishna (Author) / Dooley, Kevin (Thesis advisor) / Dai, Lenore (Thesis advisor) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2014
152974-Thumbnail Image.png
Description
Cyanovirin-N (CVN) is a cyanobacterial lectin with potent anti-HIV activity, mediated by binding to the N-linked oligosaccharide moiety of the envelope protein gp120. CVN offers a scaffold to develop multivalent carbohydrate-binding proteins with tunable specificities and affinities. I present here biophysical calculations completed on a monomeric-stabilized mutant of cyanovirin-N, P51G-m4-CVN,

Cyanovirin-N (CVN) is a cyanobacterial lectin with potent anti-HIV activity, mediated by binding to the N-linked oligosaccharide moiety of the envelope protein gp120. CVN offers a scaffold to develop multivalent carbohydrate-binding proteins with tunable specificities and affinities. I present here biophysical calculations completed on a monomeric-stabilized mutant of cyanovirin-N, P51G-m4-CVN, in which domain A binding activity is abolished by four mutations; with comparisons made to CVNmutDB, in which domain B binding activity is abolished. Using Monte Carlo calculations and docking simulations, mutations in CVNmutDB were considered singularly, and the mutations E41A/G and T57A were found to impact the affinity towards dimannose the greatest. 15N-labeled proteins were titrated with Manα(1-2)Manα, while following chemical shift perturbations in NMR spectra. The mutants, E41A/G and T57A, had a larger Kd than P51G-m4-CVN, matching the trends predicted by the calculations. We also observed that the N42A mutation affects the local fold of the binding pocket, thus removing all binding to dimannose. Characterization of the mutant N53S showed similar binding affinity to P51G-m4-CVN. Using biophysical calculations allows us to study future iterations of models to explore affinities and specificities. In order to further elucidate the role of multivalency, I report here a designed covalent dimer of CVN, Nested cyanovirin-N (Nested CVN), which has four binding sites. Nested CVN was found to have comparable binding affinity to gp120 and antiviral activity to wt CVN. These results demonstrate the ability to create a multivalent, covalent dimer that has comparable results to that of wt CVN.

WW domains are small modules consisting of 32-40 amino acids that recognize proline-rich peptides and are found in many signaling pathways. We use WW domain sequences to explore protein folding by simulations using Zipping and Assembly Method. We identified five crucial contacts that enabled us to predict the folding of WW domain sequences based on those contacts. We then designed a folded WW domain peptide from an unfolded WW domain sequence by introducing native contacts at those critical positions.
ContributorsWoodrum, Brian William (Author) / Ghirlanda, Giovanna (Thesis advisor) / Redding, Kevin (Committee member) / Wang, Xu (Committee member) / Arizona State University (Publisher)
Created2014
152890-Thumbnail Image.png
Description
Post-combustion carbon capture is a viable option for reducing CO2 greenhouse gas emissions, and one potentially promising technology for this route is adsorption using chemically and physically based sorbents. A number of exceptional CO2 sorbents materials have been prepared including metal organic frameworks, zeolites, and carbon based materials. One particular

Post-combustion carbon capture is a viable option for reducing CO2 greenhouse gas emissions, and one potentially promising technology for this route is adsorption using chemically and physically based sorbents. A number of exceptional CO2 sorbents materials have been prepared including metal organic frameworks, zeolites, and carbon based materials. One particular group of capable materials are amine based solid sorbents that has shown to possess high adsorption capacities and favorable adsorption kinetics. A key variable in the synthesis of an amine based sorbent is the support which acts as the platform for the amine modification. Aerogels, due to their high porosities and surface areas, appear to be a promising support for an amine modified CO2 sorbent. Therefore, in order to develop a commercially viable CO2 sorbent, particulate aerogels manufactured by Cabot Corporation through an economical and proprietary ambient drying process were modified with amines using a variety of functionalization methods. Two methods of physical impregnation of the amino polymer TEPA were performed in order to observe the performance as well as understand the effects of how the TEPA distribution is affected by the method of introduction. Both samples showed excellent adsorption capacities but poor cyclic stability for lack of any covalent attachment. Furthermore the method of TEPA impregnation seems to be independent on how the polymer will be distributed in the pore space of aerogel. The last two methods utilized involved covalently attaching amino silanes to the surface silanols of the aerogel. One method was performed in the liquid phase under anhydrous and hydrous conditions. The materials developed through the hydrous method have much greater adsorption capacities relative to the anhydrous sample as a result of the greater amine content present in the hydrous sample. Water is another source of silylation where additional silanes can attach and polymerize. These samples also possessed stable cyclic stability after 100 adsorption/regeneration cycles. The other method of grafting was performed in the gas phase through ALD. These samples possessed exceptionally high amine efficiencies and levels of N content without damaging the microstructure of the aerogel in contrast to the liquid phase grafted sorbents.
ContributorsLinneen, Nick (Author) / Lin, Jerry (Thesis advisor) / Pfeffer, Robert (Thesis advisor) / Lind, Mary (Committee member) / Rege, Kaushal (Committee member) / Nielsen, David (Committee member) / Anderson, James (Committee member) / Arizona State University (Publisher)
Created2014