This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 9 of 9
Filtering by

Clear all filters

133891-Thumbnail Image.png
Description
The current study investigated whether intermittent restraint stress (IRS) would impair fear extinction learning and lead to increased anxiety and depressive- like behaviors and then be attenuated when IRS ends and a post- stress rest period ensues for 6 weeks. Young adult, male Sprague Dawley rats underwent restraint stress using

The current study investigated whether intermittent restraint stress (IRS) would impair fear extinction learning and lead to increased anxiety and depressive- like behaviors and then be attenuated when IRS ends and a post- stress rest period ensues for 6 weeks. Young adult, male Sprague Dawley rats underwent restraint stress using wire mesh (6hr/daily) for five days with two days off before restraint resumed for three weeks for a total of 23 restraint days. The groups consisted of control (CON) with no restraint other than food and water restriction yoked to the restrained groups, stress immediate (STR-IMM), which were restrained then fear conditioned soon after the end of the IRS paradigm, and stress given a rest for 6 weeks before fear conditioning commenced (STR-R6). Rats were fear conditioned by pairing a 20 second tone with a footshock, then given extinction training for two days (15 tone only on each day). On the first day of extinction, all groups discriminated well on the first trial, but then as trials progressed, STR-R6 discriminated between tone and context less than did CON. On the second day of extinction, STR- IMM froze more to context in the earlier trials than compared to STR-R6 and CON. As trials progressed STR-IMM and STR-R6 froze more to context than compared to CON. Together, CON discriminated between tone and context better than did STR-IMM and STR-R6. Sucrose preference, novelty suppressed feeding, and elevated plus maze was performed after fear extinction was completed. No statistical differences were observed among groups for sucrose preference or novelty suppressed feeding. For the elevated plus maze, STR-IMM entered the open arms and the sum of both open and closed arms fewer than did STR- R6 and CON. We interpret the findings to suggest that the stress groups displayed increased hypervigilance and anxiety with STR-R6 exhibiting a unique phenotype than that of STR-IMM and CON.
ContributorsShah, Vrishti Bimal (Author) / Conrad, Cheryl (Thesis director) / Newbern, Jason (Committee member) / Judd, Jessica (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136626-Thumbnail Image.png
Description
Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional

Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional regulation by regulatory non-coding RNAs, such as microRNAs or RNA binding proteins defects of which have been implicated in diseases such as cancer. Despite the increasing level of information, functional understanding of the molecular mechanisms involved in transcription is still poorly understood, nor is it clear why APA is necessary at a cell or tissue-specific level. To address these questions I wanted to develop a set of sensor strain plasmids capable of detecting cleavage and polyadenylation in vivo, inject the complete sensor strain plasmid into C. elegans and prepare stable transgenic lines, and perform proof-of-principle RNAi feeding experiments targeting genes associated with the cleavage and polyadenylation complex machinery. I demonstrated that it was possible to create a plasmid capable of detecting cleavage and polyadenylation in C. elegans; however, issues arose during the RNAi assays indicating the sensor strain plasmid was not sensitive enough to the RNAi to effectively detect in the worms. Once the problems involved with sensitivity and variability in the RNAi effects are resolved, the plasmid would be able to better address questions regarding the functional understanding of molecular mechanisms involved in transcription termination.
ContributorsWilky, Henry Patrick (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Blazie, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
134627-Thumbnail Image.png
Description
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the deterioration of motor neurons. ALS affects about 1 in 20,000 people and leads to death within 2 to 5 years after diagnosis. There is currently no cure for ALS, but there are many genes known to be associated

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the deterioration of motor neurons. ALS affects about 1 in 20,000 people and leads to death within 2 to 5 years after diagnosis. There is currently no cure for ALS, but there are many genes known to be associated with ALS, such as SOD 1 and C9orf72. Recently, mutations in Matrin 3 were linked to ALS. While 15 mutations in Matrin 3 have been discovered, this study focuses on the four initial mutations, which are the Ser85Cys, Phe115Cys, Pro154Ser, and Thr622Ala mutations. This study attempts to understand the mechanism of how these mutations lead to ALS. The first aim focuses on the role of Matrin mutations in the mislocalization of TDP-43 from the nucleus to the cytoplasm, a pathological hallmark of ALS. We hypothesized expression of mutant Matrin 3 would lead to TDP-43 mislocalization, however the data did not support that hypothesis. The second aim of this study focuses on the mislocalization of TRanscription EXport (TREX) complex proteins within the nucleus. TREX proteins were studied based off of previous experiments suggesting that proteins within this complex bind to Matrin 3. The results showed differences in co-localization between each of these proteins and wild-type and mutant Matrin 3, confirming our earlier results. These findings can help increase our understanding of the mechanism of ALS while also setting the framework for future studies.
ContributorsSingh, Gurkaran (Author) / Bowser, Robert (Thesis director) / Newbern, Jason (Committee member) / Boehringer, Ashley (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134448-Thumbnail Image.png
Description
Schizophrenia is a debilitating psychiatric disorder with poorly understood genetic and environmental factors. An allelic variant of complement component 4 (C4), a protein first identified in innate immune response is strongly associated with schizophrenia. In the brain, activity of C4 leads to dendritic pruning, a process that may

Schizophrenia is a debilitating psychiatric disorder with poorly understood genetic and environmental factors. An allelic variant of complement component 4 (C4), a protein first identified in innate immune response is strongly associated with schizophrenia. In the brain, activity of C4 leads to dendritic pruning, a process that may be causal in disease progression. Environmental factors, such as early life exposure to significant stressors also associate with increased risk of schizophrenia in later life. My hypothesis is that these factors do not act independently, but rather in tandem to influence disease etiology.
This hypothesis is supported by previous studies demonstrating that stress-induced elevation of glucocorticoids increases the transcription of C4. I propose that activated glucocorticoid receptors directly increase C4 protein expression as a transcription factor activator. Additionally, I propose that activated glucocorticoid receptors inhibit the expression of the transcription factor nuclear factor-light-chain-enhancer of activated B cells (NF-κB), thereby leading to decreased expression of the C4 inhibitor CUB and Sushi multiple domains 1 (CSMD1).
Glucocorticoid receptors and C4 are richly expressed in the hippocampus, a region critical in memory consolidation, spatial, and declarative memory. I propose that stress-induced upregulation of C4 activity in the hippocampus promotes excessive synaptic pruning, contributing to specific deficits and hippocampal shrinkage seen in schizophrenia. Stress exposure during fetal development and adolescence likely acts through the proposed mechanisms to increase hippocampal C4 activity and subsequent schizophrenia risk. These mechanisms may reveal novel interactions between environmental and genetic risk factors in the etiology of schizophrenia through complement activation.
ContributorsHoegh, Emily Marie (Author) / Orchinik, Miles (Thesis director) / Newbern, Jason (Committee member) / Talboom, Joshua (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133745-Thumbnail Image.png
Description
Previously we found that the serotonin 1B receptor (5-HT1BR) agonist CP 94,253 (CP) enhances the reinforcing properties of cocaine when given to male rats self-administering the drug daily, however, CP had the opposite effect following a 21-day period of abstinence. Methamphetamine, like cocaine, has similar mechanisms of action on the

Previously we found that the serotonin 1B receptor (5-HT1BR) agonist CP 94,253 (CP) enhances the reinforcing properties of cocaine when given to male rats self-administering the drug daily, however, CP had the opposite effect following a 21-day period of abstinence. Methamphetamine, like cocaine, has similar mechanisms of action on the monoamine neurotransmitter systems. Therefore, we predicted that CP would have effects on the reinforcing properties of methamphetamine similar to cocaine. Additionally, we examined effects of the FDA-approved 5-HT1B/DR agonist, zolmitriptan, on psychostimulant self-administration. We first tested the effects of CP on methamphetamine self-administration utilizing a fixed ratio or progressive ratio schedule of reinforcement and found that regardless of whether or not rats experienced abstinence, CP decreased methamphetamine intake. We next verified that the effects of CP were mediated by 5-HT1BRs by demonstrating they were reversed when paired with a 5-HT1BR antagonist. We then tested the effects of zolmitriptan on methamphetamine responding and found the same results as found with CP. Finally, we tested whether the effects of zolmitriptan generalize to female rats. Both male and female rats were given access to various doses of cocaine after treatment with zolmitriptan. We also ruled out 5-HT1BR ligands has having an effect on locomotion, to rule out motor impairment as the reason behind the decreases in drug intake. Unlike our previous findings with CP effects on cocaine self-administration, zolmitriptan attenuated cocaine intake both before and after abstinence in both male and female rats. The pre-abstinence effects of zolmitriptan in attenuating intake of different psychostimulants suggest its potential as a pharmacological treatment for psychostimulant use disorders.
ContributorsCotter, Austin Richard (Author) / Neisewander, Janet (Thesis director) / Newbern, Jason (Committee member) / Garcia, Raul (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135780-Thumbnail Image.png
Description
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown.

Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown. Current DMD research uses mdx mice as a model, and while very useful, does not allow the study of cell-autonomous transcriptome changes during the progression of DMD due to the strong inflammatory response, perhaps hiding important therapeutic targets. C. elegans, which has a very weak inflammatory response compared to mdx mice and humans, has been used in the past to study DMD with some success. The worm ortholog of the dystrophin gene has been identified as dys-1 since its mutation phenocopies the progression of the disease and a portion of the human dystrophin gene alleviates symptoms. Importantly, the extracted RNA transcriptome from dys-1 worms showed significant change in gene expression, which needs to be further investigated with the development of a more robust model. Our lab previously published a method to isolate high-quality muscle-specific RNA from worms, which could be used to study such changes at higher resolution. We crossed the dys-1 worms with our muscle-specific strain and demonstrated that the chimeric strain exhibits similar behavioral symptoms as DMD patients as characterized by a shortened lifespan, difficulty in movement, and a decrease in speed. The presence of dys-1 and other members of the dystrophin complex in the body muscle were supported by the development of a resulting phenotype due to RNAi knockdown of each component in the body muscle; however, further experimentation is needed to reinforce this conclusion. Thus, the constructed chimeric C. elegans strain possesses unique characteristics that will allow the study of genetic changes, such as transcriptome rearrangements and dysregulation of miRNA, and how they affect the progression of DMD.
ContributorsNguyen, Thuy-Duyen Cao (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Duchaine, Thomas (Committee member) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132725-Thumbnail Image.png
Description
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease which occurs in approximately 1 in 3,500 male births. This disease is characterized by progressive muscle wasting and causes premature death. One of the earliest symptoms of this disease is mitochondrial dysfunction. Dystrophin is a protein found under the sarcolemma. The

Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease which occurs in approximately 1 in 3,500 male births. This disease is characterized by progressive muscle wasting and causes premature death. One of the earliest symptoms of this disease is mitochondrial dysfunction. Dystrophin is a protein found under the sarcolemma. The N terminus binds to actin and the C terminus binds to dystrophin glycoprotein complex (DGC). DMD is caused by mutations in the dystrophin gene. C. elegans possess an ortholog of dystrophin, DYS-1. Though there is evidence that C. elegans can be used as a model organism to model DMD, nematode DGC has not been well characterized. Additionally, while we know that mitochondrial dysfunction has been found in humans and other model organisms, this has not been well defined in C. elegans. In order to address these issues, we crossed the SJ4103 worm strain (myo-3p::GFP(mit)) with dys-1(cx18) in order to visualize and quantify changes in mitochondria in a dys-1 background. SJ4103;cx18 nematodes were found to have less mitochondrial than SJ4103 which suggests mitochondrial dysfunction does occur in dys-1 worms. Furthermore, mitochondrial dysfunction was studied by knocking down members of the DGC, dys-1, dyb-1, sgn-1, sgca-1, and sgcb-1 in SJ4103 strain. Knock down of each gene resulted in decrease in abundance of mitochondria which suggests that each member of the DGC contributes to the overall health of nematode muscle. The ORF of dyb-1 was successfully cloned and tagged with GFP in order to visualize this DGC member C. elegans. Imaging of the transgenic dyb-1::GFP worm shows green fluoresce expressed in which suggests that dyb-1 is a functional component of the muscle fibers. This project will enable us to better understand the effects of dystrophin deficiency on mitochondrial function as well as visualize the expression of certain members of the DGC in order to establish C. elegans as a good model organism to study this disease.
ContributorsObrien, Shannon Nishino (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Hrach, Heather (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132413-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a major cause of disability, with approximately 1.7 million incidents reported annually. Following a TBI, patients are likely to sustain sensorimotor and cognitive impairments and are at an increased risk of developing neurodegenerative diseases later in life. Despite this, robust therapies that treat TBI neuropathology

Traumatic brain injury (TBI) is a major cause of disability, with approximately 1.7 million incidents reported annually. Following a TBI, patients are likely to sustain sensorimotor and cognitive impairments and are at an increased risk of developing neurodegenerative diseases later in life. Despite this, robust therapies that treat TBI neuropathology are not available in the clinic. One emerging therapeutic approach is to target epigenetic mediators that modulate a variety of molecular regulatory events acutely following injury. Specifically, previous studies demonstrated that histone deacetylase inhibitor (HDACi) administration following TBI reduced inflammation, enhanced functional outcomes, and was neuroprotective. Here, we evaluated a novel quisinostat-loaded PLA-PEG nanoparticle (QNP) therapy in treating TBI as modeled by a controlled cortical impact. We evaluated initial pharmacodynamics within the injured cortex via histone acetylation levels following QNP treatment. We observed that QNP administration acutely following injury increased histone acetylation specifically within the injury penumbra, as detected by Western blot analysis. Given this effect, we evaluated QNP therapeutic efficacy. We observed that QNP treatment dampened motor deficits as measured by increased rotarod latency to fall relative to blank nanoparticle- and saline-treated controls. Additionally, open field results show that QNP treatment altered locomotion following injury. These results suggest that HDACi therapies are a beneficial therapeutic strategy following neural injury and demonstrate the utility for nanoparticle formulations as a mode for HDACi delivery following TBI.
ContributorsMousa, Gergey (Author) / Stabenfeldt, Sarah (Thesis director) / Newbern, Jason (Committee member) / Sirianni, Rachael (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132424-Thumbnail Image.png
Description
The highly conserved Notch signaling pathway regulates cell-cell communication pathways, cell fate, cell determination, cell death, embryonic development, and adult tissue pathways in metazoans. The Notch receptors and ligands that bind to Notch are single pass, transmembrane proteins that communicate cell to cell via juxtacrine signaling. There are reports of

The highly conserved Notch signaling pathway regulates cell-cell communication pathways, cell fate, cell determination, cell death, embryonic development, and adult tissue pathways in metazoans. The Notch receptors and ligands that bind to Notch are single pass, transmembrane proteins that communicate cell to cell via juxtacrine signaling. There are reports of the divergent function and localization of the Deltalike 3 (Dll3) ligand. In Mus musculus (an eutherin mammal) the DLL3 protein inhibits the Notch signaling pathway and is localized in the Golgi apparatus. In contrast, the DLL3 protein from zebrafish, Danio rerio (a teleost) activates Notch and is located on the cell surface. This study will focus on examining the evolutionary pathway/evolutionary similarities, localization, and function of the A. carolinensis dll3 gene in comparison to other vertebrate species. This is important because there is not much known about the evolutionary divergence of the DLL3 A. carolinensis protein, its function in Notch signaling, and its subcellular localization.
Evolutionary analysis of vertebrate DLL3 protein sequences using phylogenetic trees showed that D. rerio and A. carolinensis are more evolutionarily similar in comparison to M. musculus suggesting that they may have similar intracellular localization. However, immunofluorescence staining experiments showed that the A. carolinensis DLL3 protein co-localized significantly with an endoplasmic reticulum (ER) specific primary antibody. Since this protein is localized in the secretory system, similar to that of M. musculus DLL3, it suggests that its function is to inhibit the Notch signaling pathway. Protein sequence alignments were created that suggested that there is a region in the protein sequences where the lizard and mouse sequence are conserved, while the zebrafish sequence simultaneously varies. This region of the amino acid sequence could be responsible for the difference in localization and function of the protein in these two species.
ContributorsBoschi, Alexis (Author) / Wilson-Rawls, Jeanne (Thesis director) / Newbern, Jason (Committee member) / Wilson Sayres, Melissa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05