This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

168276-Thumbnail Image.png
Description
This thesis develops geometrically and statistically rigorous foundations for multivariate analysis and bayesian inference posed on grassmannian manifolds. Requisite to the development of key elements of statistical theory in a geometric realm are closed-form, analytic expressions for many differential geometric objects, e.g., tangent vectors, metrics, geodesics, volume forms. The first

This thesis develops geometrically and statistically rigorous foundations for multivariate analysis and bayesian inference posed on grassmannian manifolds. Requisite to the development of key elements of statistical theory in a geometric realm are closed-form, analytic expressions for many differential geometric objects, e.g., tangent vectors, metrics, geodesics, volume forms. The first part of this thesis is devoted to a mathematical exposition of these. In particular, it leverages the classical work of Alan James to derive the exterior calculus of differential forms on special grassmannians for invariant measures with respect to which integration is permissible. Motivated by various multi-­sensor remote sensing applications, the second part of this thesis describes the problem of recursively estimating the state of a dynamical system propagating on the Grassmann manifold. Fundamental to the bayesian treatment of this problem is the choice of a suitable probability distribution to a priori model the state. Using the Method of Maximum Entropy, a derivation of maximum-­entropy probability distributions on the state space that uses the developed geometric theory is characterized. Statistical analyses of these distributions, including parameter estimation, are also presented. These probability distributions and the statistical analysis thereof are original contributions. Using the bayesian framework, two recursive estimation algorithms, both of which rely on noisy measurements on (special cases of) the Grassmann manifold, are the devised and implemented numerically. The first is applied to an idealized scenario, the second to a more practically motivated scenario. The novelty of both of these algorithms lies in the use of thederived maximum­entropy probability measures as models for the priors. Numerical simulations demonstrate that, under mild assumptions, both estimation algorithms produce accurate and statistically meaningful outputs. This thesis aims to chart the interface between differential geometry and statistical signal processing. It is my deepest hope that the geometric-statistical approach underlying this work facilitates and encourages the development of new theories and new computational methods in geometry. Application of these, in turn, will bring new insights and bettersolutions to a number of extant and emerging problems in signal processing.
ContributorsCrider, Lauren N (Author) / Cochran, Douglas (Thesis advisor) / Kotschwar, Brett (Committee member) / Scharf, Louis (Committee member) / Taylor, Thomas (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2021
171940-Thumbnail Image.png
Description
In the standard pipeline for machine learning model development, several design decisions are made largely based on trial and error. Take the classification problem as an example. The starting point for classifier design is a dataset with samples from the classes of interest. From this, the algorithm developer must decide

In the standard pipeline for machine learning model development, several design decisions are made largely based on trial and error. Take the classification problem as an example. The starting point for classifier design is a dataset with samples from the classes of interest. From this, the algorithm developer must decide which features to extract, which hypothesis class to condition on, which hyperparameters to select, and how to train the model. The design process is iterative with the developer trying different classifiers, feature sets, and hyper-parameters and using cross-validation to pick the model with the lowest error. As there are no guidelines for when to stop searching, developers can continue "optimizing" the model to the point where they begin to "fit to the dataset". These problems are amplified in the active learning setting, where the initial dataset may be unlabeled and label acquisition is costly. The aim in this dissertation is to develop algorithms that provide ML developers with additional information about the complexity of the underlying problem to guide downstream model development. I introduce the concept of "meta-features" - features extracted from a dataset that characterize the complexity of the underlying data generating process. In the context of classification, the complexity of the problem can be characterized by understanding two complementary meta-features: (a) the amount of overlap between classes, and (b) the geometry/topology of the decision boundary. Across three complementary works, I present a series of estimators for the meta-features that characterize overlap and geometry/topology of the decision boundary, and demonstrate how they can be used in algorithm development.
ContributorsLi, Weizhi (Author) / Berisha, Visar (Thesis advisor) / Dasarathy, Gautam (Thesis advisor) / Natesan Ramamurthy, Karthikeyan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2022