This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

154985-Thumbnail Image.png
Description
There are many applications for polymer matrix composite materials in a variety of different industries, but designing and modeling with these materials remains a challenge due to the intricate architecture and damage modes. Multiscale modeling techniques of composite structures subjected to complex loadings are needed in order to address

There are many applications for polymer matrix composite materials in a variety of different industries, but designing and modeling with these materials remains a challenge due to the intricate architecture and damage modes. Multiscale modeling techniques of composite structures subjected to complex loadings are needed in order to address the scale-dependent behavior and failure. The rate dependency and nonlinearity of polymer matrix composite materials further complicates the modeling. Additionally, variability in the material constituents plays an important role in the material behavior and damage. The systematic consideration of uncertainties is as important as having the appropriate structural model, especially during model validation where the total error between physical observation and model prediction must be characterized. It is necessary to quantify the effects of uncertainties at every length scale in order to fully understand their impact on the structural response. Material variability may include variations in fiber volume fraction, fiber dimensions, fiber waviness, pure resin pockets, and void distributions. Therefore, a stochastic modeling framework with scale dependent constitutive laws and an appropriate failure theory is required to simulate the behavior and failure of polymer matrix composite structures subjected to complex loadings. Additionally, the variations in environmental conditions for aerospace applications and the effect of these conditions on the polymer matrix composite material need to be considered. The research presented in this dissertation provides the framework for stochastic multiscale modeling of composites and the characterization data needed to determine the effect of different environmental conditions on the material properties. The developed models extend sectional micromechanics techniques by incorporating 3D progressive damage theories and multiscale failure criteria. The mechanical testing of composites under various environmental conditions demonstrates the degrading effect these conditions have on the elastic and failure properties of the material. The methodologies presented in this research represent substantial progress toward understanding the failure and effect of variability for complex polymer matrix composites.
ContributorsJohnston, Joel Philip (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Jiang, Hanqing (Committee member) / Dai, Lenore (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2016
158609-Thumbnail Image.png
Description
Interpersonal communications during civil infrastructure systems operation and maintenance (CIS O&M) are processes for CIS O&M participants to exchange critical information. Poor communications that provide misleading information can jeopardize CIS O&M safety and efficiency. Previous studies suggest that communication contexts and features could be indicators of communication errors and relevant

Interpersonal communications during civil infrastructure systems operation and maintenance (CIS O&M) are processes for CIS O&M participants to exchange critical information. Poor communications that provide misleading information can jeopardize CIS O&M safety and efficiency. Previous studies suggest that communication contexts and features could be indicators of communication errors and relevant CIS O&M risks. However, challenges remain for reliable prediction of communication errors to ensure CIS O&M safety and efficiency. For example, existing studies lack a systematic summarization of risky contexts and features of communication processes for predicting communication errors. Limited studies examined quantitative methods for incorporating expert opinions as constraints for reliable communication error prediction. How to examine mitigation strategies (e.g., adjustments of communication protocols) for reducing communication-related CIS O&M risks is also challenging. The main reason is the lack of causal analysis about how various factors influence the occurrences and impacts of communication errors so that engineers lack the basis for intervention.

This dissertation presents a method that integrates Bayesian Network (BN) modeling and simulation for communication-related risk prediction and mitigation. The proposed method aims at tackling the three challenges mentioned above for ensuring CIS O&M safety and efficiency. The proposed method contains three parts: 1) Communication Data Collection and Error Detection – designing lab experiments for collecting communication data in CIS O&M workflows and using the collected data for identifying risky communication contexts and features; 2) Communication Error Classification and Prediction – encoding expert knowledge as constraints through BN model updating to improve the accuracy of communication error prediction based on given communication contexts and features, and 3) Communication Risk Mitigation – carrying out simulations to adjust communication protocols for reducing communication-related CIS O&M risks.

This dissertation uses two CIS O&M case studies (air traffic control and NPP outages) to validate the proposed method. The results indicate that the proposed method can 1) identify risky communication contexts and features, 2) predict communication errors and CIS O&M risks, and 3) reduce CIS O&M risks triggered by communication errors. The author envisions that the proposed method will shed light on achieving predictive control of interpersonal communications in dynamic and complex CIS O&M.
ContributorsSun, Zhe (Author) / Tang, Pingbo (Thesis advisor) / Ayer, Steven K (Committee member) / Cooke, Nancy J. (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2020