This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

161596-Thumbnail Image.png
Description
Additively Manufactured Thin-wall Inconel 718 specimens commonly find application in heat exchangers and Thermal Protection Systems (TPS) for space vehicles. The wall thicknesses in applications for these components typically range between 0.03-2.5mm. Laser Powder Bed Fusion (PBF) Fatigue standards assume thickness over 5mm and consider Hot Isostatic Pressing

Additively Manufactured Thin-wall Inconel 718 specimens commonly find application in heat exchangers and Thermal Protection Systems (TPS) for space vehicles. The wall thicknesses in applications for these components typically range between 0.03-2.5mm. Laser Powder Bed Fusion (PBF) Fatigue standards assume thickness over 5mm and consider Hot Isostatic Pressing (HIP) as conventional heat treatment. This study aims at investigating the dependence of High Cycle Fatigue (HCF) behavior on wall thickness and Hot Isostatic Pressing (HIP) for as-built Additively Manufactured Thin Wall Inconel 718 alloys. To address this aim, high cycle fatigue tests were performed on specimens of seven different thicknesses (0.3mm,0.35mm, 0.5mm, 0.75mm, 1mm, 1.5mm, and 2mm) using a Servohydraulic FatigueTesting Machine. Only half of the specimen underwent HIP, creating data for bothHIP and No-HIP specimens. Upon analyzing the collected data, it was noticed that the specimens that underwent HIP had similar fatigue behavior to that of sheet metal specimens. In addition, it was also noticed that the presence of Porosity in No-HIP specimens makes them more sensitive to changes in stress. A clear decrease in fatigue strength with the decrease in thickness was observed for all specimens.
ContributorsSaxena, Anushree (Author) / Bhate, Dhruv (Thesis advisor) / Liu, Yongming (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2021
Description
The study aims to develop and evaluate failure prediction models that accurately predict crack initiation sites, fatigue life in additively manufactured Ti-6Al-4V, and burst pressure in relevant applications.The first part proposes a classification model to identify crack initiation sites in AM-built Ti-6Al-4V alloy. The model utilizes surface and pore-related parameters

The study aims to develop and evaluate failure prediction models that accurately predict crack initiation sites, fatigue life in additively manufactured Ti-6Al-4V, and burst pressure in relevant applications.The first part proposes a classification model to identify crack initiation sites in AM-built Ti-6Al-4V alloy. The model utilizes surface and pore-related parameters and achieves high accuracy (0.97) and robustness (F1 score of 0.98). Leveraging CT images for characterization and data extraction from the CT-images built STL files, the model effectively detects crack initiation sites while minimizing false positives and negatives. Data augmentation techniques, including SMOTE+Tomek Links, are employed to address imbalanced data distributions and improve model performance. This study proposes the Probabilistic Physics-guided Neural Network 2.0 (PPgNN) for probabilistic fatigue life estimation. The presented approach overcomes the limitations of classical regression machine models commonly used to analyze fatigue data. One key advantage of the proposed method is incorporating known physics constraints, resulting in accurate and physically consistent predictions. The efficacy of the model is demonstrated by training the model with multiple fatigue S-N curve data sets from open literature with relevant morphological data and tested using the data extracted from CT-built STL files. The results illustrate that PPgNN 2.0 is a flexible and robust model for predicting fatigue life and quantifying uncertainties by estimating the mean and standard deviation of the fatigue life. The loss function that trains the proposed model can capture the underlying distribution and reduce the prediction error. A comparison study between the performance of neural network models highlights the benefits of physics-guided learning for fatigue data analysis. The proposed model demonstrates satisfactory learning capacity and generalization, providing accurate fatigue life predictions to unseen examples. An elastic-plastic Finite Element Model (FEM) is developed in the second part to assess pipeline integrity, focusing on burst pressure estimation in high-pressure gas pipelines with interactive corrosion defects. The FEM accurately predicts burst pressure and evaluates the remaining useful life by considering the interaction between corrosion defects and neighboring pits. The FEM outperforms the well-known ASME-B31G method in handling interactive corrosion threats.
ContributorsBalamurugan, Rakesh (Author) / Liu, Yongming (Thesis advisor) / Zhuang, Houlong (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2023
187523-Thumbnail Image.png
Description
The design of energy absorbing structures is driven by application specific requirements like the amount of energy to be absorbed, maximum transmitted stress that is permissible, stroke length, and available enclosing space. Cellular structures like foams are commonly leveraged in nature for energy absorption and have also found use in

The design of energy absorbing structures is driven by application specific requirements like the amount of energy to be absorbed, maximum transmitted stress that is permissible, stroke length, and available enclosing space. Cellular structures like foams are commonly leveraged in nature for energy absorption and have also found use in engineering applications. With the possibility of manufacturing complex cellular shapes using additive manufacturing technologies, there is an opportunity to explore new topologies that improve energy absorption performance. This thesis aims to systematically understand the relationships between four key elements: (i) unit cell topology, (ii) material composition, (iii) relative density, and (iv) fields; and energy absorption behavior, and then leverage this understanding to develop, implement and validate a methodology to design the ideal cellular structure energy absorber. After a review of the literature in the domain of additively manufactured cellular materials for energy absorption, results from quasi-static compression of six cellular structures (hexagonal honeycomb, auxetic and Voronoi lattice, and diamond, Gyroid, and Schwarz-P) manufactured out of AlSi10Mg and Nylon-12. These cellular structures were compared to each other in the context of four design-relevant metrics to understand the influence of cell design on the deformation and failure behavior. Three new and revised metrics for energy absorption were proposed to enable more meaningful comparisons and subsequent design selection. Triply Periodic Minimal Surface (TPMS) structures were found to have the most promising overall performance and formed the basis for the numerical investigation of the effect of fields on the energy absorption performance of TPMS structures. A continuum shell-based methodology was developed to analyze the large deformation behavior of field-driven variable thickness TPMS structures and validated against experimental data. A range of analytical and stochastic fields were then evaluated that modified the TPMS structure, some of which were found to be effective in enhancing energy absorption behavior in the structures while retaining the same relative density. Combining findings from studies on the role of cell geometry, composition, relative density, and fields, this thesis concludes with the development of a design framework that can enable the formulation of cellular material energy absorbers with idealized behavior.
ContributorsShinde, Mandar (Author) / Bhate, Dhruv (Thesis advisor) / Peralta, Pedro (Committee member) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2023