This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 131
147896-Thumbnail Image.png
Description

This research covers the landscape of influencer marketing and combines it with the knowledge of 11 content creators and one social media specialist, ultimately producing an actionable handbook. Participants were asked questions that were intended to discover key strategies, level of difficulty, and overall insight into the content creator world.

This research covers the landscape of influencer marketing and combines it with the knowledge of 11 content creators and one social media specialist, ultimately producing an actionable handbook. Participants were asked questions that were intended to discover key strategies, level of difficulty, and overall insight into the content creator world. Best practices and key findings are identified in the research paper, and outlined into four parts in the handbook. The handbook serves as a compilation framework derived from my primary and secondary sources designed to provide anyone interested in becoming a content creator or social media influencer on steps they may take given what their predecessors have done to successfully launch their careers in the space.

ContributorsEsparza, Alexa (Author) / Giles, Charles (Thesis director) / Schlacter, John (Committee member) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150155-Thumbnail Image.png
Description
Rhodoferax antarcticus strain ANT.BR, a purple nonsulfur bacterium isolated from a microbial mat in Ross Island, Antarctica, is the first described anoxygenic phototrophic bacterium that is adapted to cold habitats and is the first beta-proteobacterium to undergo complete genome sequencing. R. antarcticus has unique absorption spectra and there are no

Rhodoferax antarcticus strain ANT.BR, a purple nonsulfur bacterium isolated from a microbial mat in Ross Island, Antarctica, is the first described anoxygenic phototrophic bacterium that is adapted to cold habitats and is the first beta-proteobacterium to undergo complete genome sequencing. R. antarcticus has unique absorption spectra and there are no obvious intracytoplasmic membranes in cells grown phototrophically, even under low light intensity. Analysis of the finished genome sequence reveals a single chromosome (3,809,266 bp) and a large plasmid (198,615 bp) that together harbor 4,262 putative genes. The genome contains two types of Rubiscos, Form IAq and Form II, which are known to exhibit quite different kinetic properties in other bacteria. The presence of multiple Rubisco forms could give R. antarcticus high metabolic flexibility in diverse environments. Annotation of the complete genome sequence along with previous experimental results predict the presence of structural genes for three types of light-harvesting (LH) complexes, LH I (B875), LH II (B800/850), and LH III (B800/820). There is evidence that expression of genes for the LH II complex might be inhibited when R. antarcticus is under low temperature and/or low light intensity. These interesting condition-dependent light-harvesting apparatuses and the control of their expression are very valuable for the further understanding of photosynthesis in cold environments. Finally, R. antarcticus exhibits a highly motile lifestyle. The genome content and organization of all putative polar flagella genes are characterized and discussed.
ContributorsZhao, Tingting, M.S (Author) / Touchman, Jeffrey (Thesis advisor) / Rosenberg, Michael (Committee member) / Redding, Kevin (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2011
150657-Thumbnail Image.png
Description
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is widely accepted as the world's most abundant enzyme and represents the primary entry point for inorganic carbon into the biosphere. Rubisco's slow carboxylation rate of ribulose-1,5-bisphosphate (RuBP) and its susceptibility to inhibition has led some to term it the "bottle neck" of photosynthesis. In order to

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is widely accepted as the world's most abundant enzyme and represents the primary entry point for inorganic carbon into the biosphere. Rubisco's slow carboxylation rate of ribulose-1,5-bisphosphate (RuBP) and its susceptibility to inhibition has led some to term it the "bottle neck" of photosynthesis. In order to ensure that Rubisco remains uninhibited, plants require the catalytic chaperone Rubisco activase. Activase is a member of the AAA+ superfamily, ATPases associated with various cellular activities, and uses ATP hydrolysis as the driving force behind a conformational movement that returns activity to inhibited Rubisco active sites. A high resolution activase structure will be an essential tool for examining Rubisco/activase interactions as well as understanding the activase self-association phenomenon. Rubisco activase has long eluded crystallization, likely due to its infamous self-association (polydispersity). Therefore, a limited proteolysis approach was taken to identify soluble activase subdomains as potential crystallization targets. This process involves using proteolytic enzymes to cleave a protein into a few pieces and has previously proven successful in identifying crystallizable protein fragments. Limited proteolysis, utilizing two different proteolytic enzymes (alpha-chymotrypsin and trypsin), identified two tobacco activase products. The fragments that were identified appear to represent most of what is considered to be the AAA+ C-terminal all alpha-domain and some of the AAA+ N-terminal alpha beta alpha-domain. Identified fragments were cloned using the pET151/dTOPO. The project then moved towards cloning and recombinant protein expression in E. coli. NtAbeta(248-383) and NtAbeta(253-354) were successfully cloned, expressed, purified, and characterized through various biophysical techniques. A thermofluor assay of NtAbeta(248-383) revealed a melting temperature of about 30°C, indicating lower thermal stability compared with full-length activase at 43°C. Size exclusion chromatography suggested that NtAbeta(248-383) is monomeric. Circular dichroism was used to identify the secondary structure; a plurality of alpha-helices. NtAbeta(248-383) and NtAbeta(253-354) were subjected to crystallization trials.
ContributorsConrad, Alan (Author) / Wachter, Rebekka (Thesis advisor) / Moore, Thomas (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2012
148371-Thumbnail Image.png
Description

Micro influencers have become extremely powerful in terms of swaying buying patterns among consumers. This thesis examines the greater impact that micro influencers have on brand marketing. This was completed through a literature review that highlights the evolution of marketing, influencer marketing, discussing reach, relevance, and resonance, and Generation Z’s

Micro influencers have become extremely powerful in terms of swaying buying patterns among consumers. This thesis examines the greater impact that micro influencers have on brand marketing. This was completed through a literature review that highlights the evolution of marketing, influencer marketing, discussing reach, relevance, and resonance, and Generation Z’s purchasing decisions. In addition, we conducted an online survey through Qualtrics that allowed us to analyze the impact social media influencers have. The results of our research indicate that TikTok is used most frequently, but Instagram is where social media influencers are followed most. From our data, we concluded that Generation Z is most influenced by authentic, genuine content created by influencers regardless of follower count. We recommend that a brand interested in reaching Generation Z (we refer to the brand as “Brand X”) use micro influencers, as our research shows that genuine relationships are valued among this generation. We believe that micro influencers are the most valuable to use as they are able to create meaningful relationships with consumers due to their reach, relevance, and resonance with the individuals their content reaches.

ContributorsYoung, Colbi G (Co-author) / Keenan, Anna (Co-author) / Giles, Charles Bret (Thesis director) / Schlacter, John (Committee member) / Department of Finance (Contributor) / Department of Marketing (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148372-Thumbnail Image.png
Description

Micro influencers have become extremely powerful in terms of swaying buying patterns among consumers. This thesis examines the greater impact that micro influencers have on brand marketing. This was completed through a literature review that highlights the evolution of marketing, influencer marketing, discussing reach, relevance, and resonance, and Generation Z’s

Micro influencers have become extremely powerful in terms of swaying buying patterns among consumers. This thesis examines the greater impact that micro influencers have on brand marketing. This was completed through a literature review that highlights the evolution of marketing, influencer marketing, discussing reach, relevance, and resonance, and Generation Z’s purchasing decisions. In addition, we conducted an online survey through Qualtrics that allowed us to analyze the impact social media influencers have. The results of our research indicate that TikTok is used most frequently, but Instagram is where social media influencers are followed most. From our data, we concluded that Generation Z is most influenced by authentic, genuine content created by influencers regardless of follower count. We recommend that a brand interested in reaching Generation Z (we refer to the brand as “Brand X”) use micro influencers, as our research shows that genuine relationships are valued among this generation. We believe that micro influencers are the most valuable to use as they are able to create meaningful relationships with consumers due to their reach, relevance, and resonance with the individuals their content reaches.

ContributorsKeenan, Anna Kingsley (Co-author) / Young, Colbi (Co-author) / Giles, Charles Bret (Thesis director) / Schlacter, John (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Independent artists are thriving in the modern music industry, creating and branding their own music, and developing rich concentrations of fans. Indie artists are progressively securing positions within mainstream music while also upholding individuality. With technology advancements, to include self-recording technology, wearable devices, and mobile operating systems, independent artists are

Independent artists are thriving in the modern music industry, creating and branding their own music, and developing rich concentrations of fans. Indie artists are progressively securing positions within mainstream music while also upholding individuality. With technology advancements, to include self-recording technology, wearable devices, and mobile operating systems, independent artists are able to extend their reach to a variety of audiences. Social media platforms' progression has further catalyzed artists' capability of growth, as they have the capacity to personalize marketing content, develop loyal fan-bases, and engage directly with potential consumers. Artists are increasingly fabricating their own unique spaces in an industry that was formerly controlled by conventions. This thesis involves the production of a three-song extended play, and ascertains how to effectively capitalize on the wide array of modern marketing platforms.
ContributorsBerk, Ruth C (Author) / Ostrom, Lonnie (Thesis director) / Schlacter, John (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
135875-Thumbnail Image.png
Description
With a quantum efficiency of nearly 100%, the electron transfer process that occurs within the reaction center protein of the photosynthetic bacteria Rhodobacter (Rh.) sphaeroides is a paragon for understanding the complexities, intricacies, and overall systemization of energy conversion and storage in natural systems. To better understand the way in

With a quantum efficiency of nearly 100%, the electron transfer process that occurs within the reaction center protein of the photosynthetic bacteria Rhodobacter (Rh.) sphaeroides is a paragon for understanding the complexities, intricacies, and overall systemization of energy conversion and storage in natural systems. To better understand the way in which photons of light are captured, converted into chemically useful forms, and stored for biological use, an investigation into the reaction center protein, specifically into its cascade of cofactors, was undertaken. The purpose of this experimentation was to advance our knowledge and understanding of how differing protein environments and variant cofactors affect the spectroscopic aspects of and electron transfer kinetics within the reaction of Rh. sphaeroides. The native quinone, ubiquinone, was extracted from its pocket within the reaction center protein and replaced by non-native quinones having different reduction/oxidation potentials. It was determined that, of the two non-native quinones tested—1,2-naphthaquinone and 9,10- anthraquinone—the substitution of the anthraquinone (lower redox potential) resulted in an increased rate of recombination from the P+QA- charge-separated state, while the substitution of the napthaquinone (higher redox potential) resulted in a decreased rate of recombination.
ContributorsSussman, Hallie Rebecca (Author) / Woodbury, Neal (Thesis director) / Redding, Kevin (Committee member) / Lin, Su (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description
This thesis provides an analysis on the crowdfunding environment in comparison to traditional fundraising methods in an effort to understand the relationship between the two types of fundraising and why crowdfunding has gained traction. Additionally, this thesis provides a study on good vs. bad crowdfunding to formulate a strategy for

This thesis provides an analysis on the crowdfunding environment in comparison to traditional fundraising methods in an effort to understand the relationship between the two types of fundraising and why crowdfunding has gained traction. Additionally, this thesis provides a study on good vs. bad crowdfunding to formulate a strategy for crowdfunding success. Methods of analysis include the execution of a situational analysis for both fundraising environments, and the collection of primary and secondary data of case studies of both crowdfunding failures and successes. Results showed that although crowdfunding provides lower search cost, greater efficiency, and eliminates geographical limitations leading to successful fundraising, the industry itself is too new and unexplored to be solely relied upon. Fundraising campaigns are most effective when crowdfunding is used complimentary to traditional fundraising methods. This thesis finds that crowdfunding offers unparalleled connectivity between creators and funders, but the transparency of the crowdfunding process is not ready to be trusted entirely. Until more data is collected on the crowdfunding environment, crowdfunding is best utilized in conjunction with traditional fundraising methods.
ContributorsRoth, Ari Lawrence Max (Author) / Giles, Bret (Thesis director) / Schlacter, John (Committee member) / Department of Marketing (Contributor) / Herberger Institute for Design and the Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135804-Thumbnail Image.png
Description
Arizona State University students are currently out of the loop when it comes to hearing about events being held in their community. This is because there is no established service that provides an inclusive list of both on and near campus events. What's worse is that the current methods for

Arizona State University students are currently out of the loop when it comes to hearing about events being held in their community. This is because there is no established service that provides an inclusive list of both on and near campus events. What's worse is that the current methods for event marketing rely heavily on who one knows. Currently, ASU students hear about events through word of mouth, email chains, Facebook pages, and posters around campus. Thankfully, there is now an event marketing method that is available to everyone. UniEvents is a newly developed event service that live-tracks events around ASU's Tempe campus. UniEvents consists of a webpage that accommodates all screen sizes and is accessible by all devices including smartphones, tablets, and desktop computers. The website offers a user-friendly interface and useful features. Students are able to scan through event listings on a calendar or they can use an interactive map to find events nearest to them. Furthermore, UniEvents also offers the option for users to submit events to be advertised through the service. This way, students and organizations can easily spread the word about events on campus. Through UniEvents, ASU students will finally be able to see a conclusive list of upcoming events in one convenient site. Students will be able to save time and hassle by not having to rely on numerous sources to learn about events. UniEvents is committed to help students learn about events and get involved in campus activities!
ContributorsDeegan, Taylor (Co-author) / Nguyen, Lilian (Co-author) / Ostrom, Lonnie (Thesis director) / Schlacter, John (Committee member) / Harrington Bioengineering Program (Contributor) / Economics Program in CLAS (Contributor) / Department of Information Systems (Contributor) / Department of Marketing (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136921-Thumbnail Image.png
Description
Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest

Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest in understanding electron flow in the plastoquinol pool. In order to characterize this PTOX, polyclonal antibodies were developed. Expression of Synechococcus WH8102 PTOX in E. coli provided a useful means to harvest the protein required for antibody production. Once developed, the antibody was tested for limit of concentration, effectiveness in whole cell lysate, and overall specificity. The antibody raised against PTOX was able to detect as low as 10 pg of PTOX in SDS-PAGE, and could detect PTOX extracted from lysed Synechococcus WH8102. The production of this antibody could determine the localization of the PTOX in Synechococcus.
ContributorsKhan, Mohammad Iqbal (Author) / Moore, Thomas (Thesis director) / Redding, Kevin (Committee member) / Roberson, Robert (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05