This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 18
Filtering by

Clear all filters

135875-Thumbnail Image.png
Description
With a quantum efficiency of nearly 100%, the electron transfer process that occurs within the reaction center protein of the photosynthetic bacteria Rhodobacter (Rh.) sphaeroides is a paragon for understanding the complexities, intricacies, and overall systemization of energy conversion and storage in natural systems. To better understand the way in

With a quantum efficiency of nearly 100%, the electron transfer process that occurs within the reaction center protein of the photosynthetic bacteria Rhodobacter (Rh.) sphaeroides is a paragon for understanding the complexities, intricacies, and overall systemization of energy conversion and storage in natural systems. To better understand the way in which photons of light are captured, converted into chemically useful forms, and stored for biological use, an investigation into the reaction center protein, specifically into its cascade of cofactors, was undertaken. The purpose of this experimentation was to advance our knowledge and understanding of how differing protein environments and variant cofactors affect the spectroscopic aspects of and electron transfer kinetics within the reaction of Rh. sphaeroides. The native quinone, ubiquinone, was extracted from its pocket within the reaction center protein and replaced by non-native quinones having different reduction/oxidation potentials. It was determined that, of the two non-native quinones tested—1,2-naphthaquinone and 9,10- anthraquinone—the substitution of the anthraquinone (lower redox potential) resulted in an increased rate of recombination from the P+QA- charge-separated state, while the substitution of the napthaquinone (higher redox potential) resulted in a decreased rate of recombination.
ContributorsSussman, Hallie Rebecca (Author) / Woodbury, Neal (Thesis director) / Redding, Kevin (Committee member) / Lin, Su (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
132132-Thumbnail Image.png
Description
Porphyromonas gingivalis (P. gingivalis) is an oral pathogen known for causing periodontal diseases like periodontitis and alveolar bone loss. In this study, we investigate the molecular mechanisms of P. gingivalis with focus of the molecular cloning of the two DNA strains of the bacteria PGN_1740 and PGN_0012 in the

Porphyromonas gingivalis (P. gingivalis) is an oral pathogen known for causing periodontal diseases like periodontitis and alveolar bone loss. In this study, we investigate the molecular mechanisms of P. gingivalis with focus of the molecular cloning of the two DNA strains of the bacteria PGN_1740 and PGN_0012 in the Ampr pTCow. PGN_1740 is an RNA polymerase ECF-type sigma factor used for transcription. PGN_0012 is a two-component system regulator gene that is important in signal transduction. We demonstrated the cloning mechanism through transformation and confirmed the results through gel electrophoresis and using a positive transformant as a control. The process of cloning the DNA inserts into the bacteria followed a polymerase chain reaction for the amplification of the DNA fragments, digestion of the plasmid and DNA fragments with the restriction endonucleases (BamHI and HindIII), ligation and finally heat shock transformation are presented in this thesis. The effectiveness of these procedures was observed through agarose gel electrophoresis and ethanol precipitation for the purification of the PCR products. In this investigation, we discuss molecular and biological characterization of the P. gingivalis bacteria in regard to cloning and ampicillin resistance.
ContributorsOkeyo, Diana (Author) / Shi, Yixin (Thesis director) / Liu, Wei (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132148-Thumbnail Image.png
Description
Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs

Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs are the ocean's "forests" and are estimated to support 25% of all marine species. However, due to the large size of a coral reef, the relative inaccessibility and the reliance on in situ surveying methods, our current understanding of reefs is spatially limited. Understanding coral reefs from a more spatially complete perspective will offer insight into the ecological factors that contribute to coral reef vitality. This has become a priority in recent years due to the rapid decline of coral reefs caused by mass bleaching. Despite this urgency, being able to assess the entirety of a coral reef is physically difficult and this obstacle has not yet been overcome. However, similar difficulties have been addressed in terrestrial ecosystems by using remote sensing methods, which apply hyperspectral imaging to assess large areas of primary producers at high spatial resolutions. Adapting this method of remote spectral sensing to assess coral reefs has been suggested, but in order to quantify primary production via hyper spectral imaging, light-use efficiencies (LUEs) of coral reef communities need to be known. LUEs are estimations of the rate of carbon fixation compared to incident absorbed light. Here, I experimentally determine LUEs and report on several parameters related to LUE, namely net productivity, respiration, and light absorbance for the main primary producers in coral reefs surrounding Bermuda, which consist of algae and coral communities. The derived LUE values fall within typical ranges for LUEs of terrestrial ecosystems, with LUE values for coral averaging 0.022 ± 0.002 mol O2 mol photons-1 day-1 at a water flow rate of 17.5 ± 2 cm s^(-1) and 0.049 ± 0.011 mol O2 mol photons-1 day-1 at a flow rate of 32 ± 4 cm s^(-1) LUE values for algae averaged 0.0335 ± 0.0048 mol O2 mol photons-1 day-1 at a flow rate of 17.5 ± 2 cm s^(-1). These values allow insight into coral reef productivity and opens the door for future remote sensing applications.
ContributorsFlesher, David A (Author) / Neuer, Susanne (Thesis director) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131767-Thumbnail Image.png
Description
The heliobacteria, a family of anoxygenic phototrophs, are significant to photosynthesis evolution research, as they possess the simplest known photosynthetic apparatus. Although they are photoheterotrophs in the light, the heliobacteria may also grow chemotrophically via pyruvate metabolism in the absence of light. In Heliobacterium modesticaldum, the cytochrome bc complex is

The heliobacteria, a family of anoxygenic phototrophs, are significant to photosynthesis evolution research, as they possess the simplest known photosynthetic apparatus. Although they are photoheterotrophs in the light, the heliobacteria may also grow chemotrophically via pyruvate metabolism in the absence of light. In Heliobacterium modesticaldum, the cytochrome bc complex is responsible for oxidizing menaquinol and reducing cytochrome c553 in the electron flow cycle used for phototrophy. However, there is no known electron acceptor for cytochrome c553 other than the photosynthetic reaction center. Therefore, it was hypothesized that the cytochrome bc complex is necessary for phototrophy, but unnecessary for chemotrophic growth in the dark. Under this hypothesis, a mutant of H. modesticaldum lacking the cytochrome bc complex was predicted to be viable, but non-phototrophic. In this project, a two-step method for CRISPR-based genome editing was used in H. modesticaldum to delete the genes encoding the cytochrome bc complex. Genotypic analysis verified the deletion of the petC, B, D, and A genes encoding the catalytic components of complex. Spectroscopic studies revealed that re-reduction of cytochrome c553 after flash-induced photo-oxidation was ~130 to 190 times slower in the ∆petCBDA mutant compared to wildtype, phenotypically confirming the removal of the cytochrome bc complex. The resulting ∆petCBDA mutant was unable to grow phototrophically, instead relying on pyruvate metabolism to grow chemotrophically as does wildtype in the dark.
ContributorsLeung, Sabrina (Author) / Redding, Kevin (Thesis director) / Liu, Wei (Committee member) / Vermaas, Wim (Committee member) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132690-Thumbnail Image.png
Description
Diabesity is a global epidemic affecting millions worldwide. Diabesity is the term given to the link between obesity and Type II diabetes. It is estimated that ~90% of patients diagnosed with Type II diabetes are overweight or have struggled with excess body fat in the past. Type II diabetes is

Diabesity is a global epidemic affecting millions worldwide. Diabesity is the term given to the link between obesity and Type II diabetes. It is estimated that ~90% of patients diagnosed with Type II diabetes are overweight or have struggled with excess body fat in the past. Type II diabetes is characterized by insulin resistance which is an impaired response of the body to insulin that leads to high blood glucose levels. Adipose tissue, previously thought of as an inert tissue, is now recognized as a major endocrine organ with an important role in the body's immune response and the development of chronic inflammation. It is speculated that adipose tissue inflammation is a major contributor to insulin resistance particular to Type II diabetes. This literature review explores the popular therapeutic targets and marketed drugs for the treatment of Type II diabetes and their role in decreasing adipose tissue inflammation. rAGE is currently in pre-clinical studies as a possible target to combat adipose tissue inflammation due to its relation to insulin resistance. Metformin and Pioglitazone are two drugs already being marketed that use unique chemical pathways to increase the production of insulin and/or decrease blood glucose levels. Sulfonylureas is one of the first FDA approved drugs used in the treatment of Type II diabetes, however, it has been discredited due to its life-threatening side effects. Bariatric surgery is a form of invasive surgery to rid the body of excess fat and has shown to normalize blood glucose levels. These treatments are all secondary to lifestyle changes, such as diet and exercise which can help halt the progression of Type II diabetes patients.
ContributorsRobles, Alondra Maria (Author) / Woodbury, Neal (Thesis director) / Redding, Kevin (Committee member) / Allen, James (Committee member) / Hendrickson, Kirstin (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133089-Thumbnail Image.png
Description
Antiviral lectins are potential candidates for future therapies against enveloped viruses like HIV due to their ability to recognize and bind glycans displayed on their surface. Cyanovirin-N (CVN), a lectin that specifically recognizes mannose-rich moieties, serves as a useful model for studying these glycan-recognition mechanisms. This study seeks to improve

Antiviral lectins are potential candidates for future therapies against enveloped viruses like HIV due to their ability to recognize and bind glycans displayed on their surface. Cyanovirin-N (CVN), a lectin that specifically recognizes mannose-rich moieties, serves as a useful model for studying these glycan-recognition mechanisms. This study seeks to improve CVN's glycan-binding affinity by conjugating a boronic acid functional group to the N-terminus via N-terminal specific reductive alkylation by way of a benzaldehyde handle. However, large discrepancies were observed when attempting to confirm a successful conjugation, and further work is necessary to identify the causes and solutions for these issues.
ContributorsDiep, Tristan H (Author) / Ghirlanda, Giovanna (Thesis director) / Redding, Kevin (Committee member) / Mills, Jeremy (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132025-Thumbnail Image.png
Description
As Alzheimer’s disease (AD) increases in incidence, there is an increased investigation into the pathogenesis of the disease in hopes of finding a cure to the neurodegenerative disease. The two key hallmarks of AD consist of amyloid beta plaques and hyperphosphorylated tau fibrillary tangles. Amyloid beta is a peptide that

As Alzheimer’s disease (AD) increases in incidence, there is an increased investigation into the pathogenesis of the disease in hopes of finding a cure to the neurodegenerative disease. The two key hallmarks of AD consist of amyloid beta plaques and hyperphosphorylated tau fibrillary tangles. Amyloid beta is a peptide that is proteolytically cleaved from the type I transmembrane glycolytic amyloid precursor protein (APP). APP is highly conserved across species, suggesting the importance of APP in healthy brain functioning. However, when APP is cleaved through the amyloidogenic pathway it produces amyloid beta. The trafficking of APP within neurons has been a new endeavor for neurodegenerative disease research, as reduced retrograde trafficking of APP has been hypothesized to increase the likelihood of the amyloidogenic cleavage of APP, resulting in increased amyloid beta presence (Ye et al., 2017). The findings of this study suggest that transport of APP within neurons is significantly inhibited by increased extracellular glutamate concentration. The addition of human primary astrocytes within a human neuron co-culture allowed for significantly increased retrograde transport of APP within neurons, even within high glutamate conditions. These finding enhance the current field of research regarding astrocytes neuroprotective role within the brain, but bring attention to the role that astrocytes have upon regulation of the axonal transport of proteins within neurons.
ContributorsKlosterman, Katja Elisabeth (Author) / Ros, Alexandra (Thesis director) / Redding, Kevin (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
Description
The understanding of normal human physiology and disease pathogenesis shows great promise for progress with increasing ability to profile genomic loci and transcripts in single cells in situ. Using biorthogonal cleavable fluorescent oligonucleotides, a highly multiplexed single-cell in situ RNA and DNA analysis is reported. In this report, azide-based cleavable

The understanding of normal human physiology and disease pathogenesis shows great promise for progress with increasing ability to profile genomic loci and transcripts in single cells in situ. Using biorthogonal cleavable fluorescent oligonucleotides, a highly multiplexed single-cell in situ RNA and DNA analysis is reported. In this report, azide-based cleavable linker connects oligonucleotides to fluorophores to show nucleic acids through in situ hybridization. Post-imaging, the fluorophores are effectively cleaved off in half an hour without loss of RNA or DNA integrity. Through multiple cycles of hybridization, imaging, and cleavage this approach proves to quantify thousands of different RNA species or genomic loci because of single-molecule sensitivity in single cells in situ. Different nucleic acids can be imaged by shown by multi-color staining in each hybridization cycle, and that multiple hybridization cycles can be run on the same specimen. It is shown that in situ analysis of DNA, RNA and protein can be accomplished using both cleavable fluorescent antibodies and oligonucleotides. The highly multiplexed imaging platforms will have the potential for wide applications in both systems biology and biomedical research. Thus, proving to be cost effective and time effective.
ContributorsSamuel, Adam David (Author) / Guo, Jia (Thesis director) / Liu, Wei (Committee member) / Wang, Xu (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134989-Thumbnail Image.png
Description
The FoF1 ATP synthase is a molecular motor critical to the metabolism of virtually all life forms, and it acts in the manner of a hydroelectric generator. The F1 complex contains an (αβ)3 (hexamer) ring in which catalysis occurs, as well as a rotor comprised by subunit-ε in addition to

The FoF1 ATP synthase is a molecular motor critical to the metabolism of virtually all life forms, and it acts in the manner of a hydroelectric generator. The F1 complex contains an (αβ)3 (hexamer) ring in which catalysis occurs, as well as a rotor comprised by subunit-ε in addition to the coiled-coil and globular foot domains of subunit-γ. The F1 complex can hydrolyze ATP in vitro in a manner that drives counterclockwise (CCW) rotation, in 120° power strokes, as viewed from the positive side of the membrane. The power strokes that occur in ≈ 300 μsec are separated by catalytic dwells that occur on a msec time scale. A single-molecule rotation assay that uses the intensity of polarized light, scattered from a 75 × 35 nm gold nanorod, determined the average rotational velocity of the power stroke (ω, in degrees/ms) as a function of the rotational position of the rotor (θ, in degrees, measured in reference to the catalytic dwell). The velocity is not constant but rather accelerates and decelerates in two Phases. Phase-1 (0° - 60°) is believed to derive power from elastic energy in the protein. At concentrations of ATP that limit the rate of ATP hydrolysis, the rotor can stop for an ATP-binding dwell during Phase-1. Although the most probable position that the ATP-binding dwell occurs is 40° after the catalytic dwell, the ATP-binding dwell can occur at any rotational position during Phase-1 of the power stroke. Phase-2 of the power stroke (60° - 120°) is believed to be powered by the ATP-binding induced closure of the lever domain of a β-subunit (as it acts as a cam shaft against the γ-subunit). Algorithms were written, to sort and analyze F1-ATPase power strokes, to determine the average rotational velocity profile of power strokes as a function of the rotational position at which the ATP-binding dwell occurs (θATP-bd), and when the ATP-binding dwell is absent. Sorting individual ω(θ) curves, as a function of θATP-bd, revealed that a dependence of ω on
θATP-bd exists. The ATP-binding dwell can occur even at saturating ATP concentrations. We report that ω follows a distinct pattern in the vicinity of the ATP-binding dwell, and that the ω(θ) curve contains the same oscillations within it regardless of θATP-bd. We observed that an acceleration/deceleration dependence before and after the ATP-binding dwell, respectively, remained for increasing time intervals as the dwell occurred later in Phase-1, to a maximum of ≈ 40°. The results were interpreted in terms of a model in which the ATP-binding dwell results from internal drag at a variable position on the γε rotor.
ContributorsBukhari, Zain Aziz (Author) / Frasch, Wayne D. (Thesis director) / Allen, James P. (Committee member) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135291-Thumbnail Image.png
Description
Acyl Carrier Protein (ACP) is a small, acidic protein that plays an essential role in fatty acid synthesis by elongating fatty acid chains. ACP was isolated from an extract of a modified strain of Synechocystis sp. PCC 6803 that contains a thioesterase and from which the acyl-ACP synthetase has been

Acyl Carrier Protein (ACP) is a small, acidic protein that plays an essential role in fatty acid synthesis by elongating fatty acid chains. ACP was isolated from an extract of a modified strain of Synechocystis sp. PCC 6803 that contains a thioesterase and from which the acyl-ACP synthetase has been deleted. Using ammonium sulfate precipitation to isolate a crude protein fraction containing ACP, immunoblot analysis was performed to determine relative amounts of free and acylated-ACP in the cell. The nature of fatty acids attached to ACP was determined by creating butylamide derivatives that were analyzed using GC/MS. Immunoblot analysis showed a roughly 1:1 ratio of acylated ACP to free ACP in the cell depending on the nutritional state of the cell. From GC/MS data it was determined that palmitic acid was the predominate component of acyl groups attached to ACP. The results indicate that there is a significant amount of acyl-ACP, a feedback inhibitor of early steps in the fatty acid biosynthesis pathway, in the cell. Moreover, the availability of free ACP may also limit fatty acid biosynthesis. Most likely it is necessary for ACP to be overexpressed or to have the palmitic acid cleaved off in order to synthesize optimal amounts of lauric acid to be used for cyanobacterial biofuel production.
ContributorsWu, Sharon Gao (Author) / Vermaas, Willem (Thesis director) / Redding, Kevin (Committee member) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05