This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 9 of 9
Filtering by

Clear all filters

150158-Thumbnail Image.png
Description
Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering

Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.
ContributorsSun, Liang (Author) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Liu, Huan (Committee member) / Mittelmann, Hans D. (Committee member) / Arizona State University (Publisher)
Created2011
156711-Thumbnail Image.png
Description
Social media refers computer-based technology that allows the sharing of information and building the virtual networks and communities. With the development of internet based services and applications, user can engage with social media via computer and smart mobile devices. In recent years, social media has taken the form

Social media refers computer-based technology that allows the sharing of information and building the virtual networks and communities. With the development of internet based services and applications, user can engage with social media via computer and smart mobile devices. In recent years, social media has taken the form of different activities such as social network, business network, text sharing, photo sharing, blogging, etc. With the increasing popularity of social media, it has accumulated a large amount of data which enables understanding the human behavior possible. Compared with traditional survey based methods, the analysis of social media provides us a golden opportunity to understand individuals at scale and in turn allows us to design better services that can tailor to individuals’ needs. From this perspective, we can view social media as sensors, which provides online signals from a virtual world that has no geographical boundaries for the real world individual's activity.

One of the key features for social media is social, where social media users actively interact to each via generating content and expressing the opinions, such as post and comment in Facebook. As a result, sentiment analysis, which refers a computational model to identify, extract or characterize subjective information expressed in a given piece of text, has successfully employs user signals and brings many real world applications in different domains such as e-commerce, politics, marketing, etc. The goal of sentiment analysis is to classify a user’s attitude towards various topics into positive, negative or neutral categories based on textual data in social media. However, recently, there is an increasing number of people start to use photos to express their daily life on social media platforms like Flickr and Instagram. Therefore, analyzing the sentiment from visual data is poise to have great improvement for user understanding.

In this dissertation, I study the problem of understanding human sentiments from large scale collection of social images based on both image features and contextual social network features. We show that neither

visual features nor the textual features are by themselves sufficient for accurate sentiment prediction. Therefore, we provide a way of using both of them, and formulate sentiment prediction problem in two scenarios: supervised and unsupervised. We first show that the proposed framework has flexibility to incorporate multiple modalities of information and has the capability to learn from heterogeneous features jointly with sufficient training data. Secondly, we observe that negative sentiment may related to human mental health issues. Based on this observation, we aim to understand the negative social media posts, especially the post related to depression e.g., self-harm content. Our analysis, the first of its kind, reveals a number of important findings. Thirdly, we extend the proposed sentiment prediction task to a general multi-label visual recognition task to demonstrate the methodology flexibility behind our sentiment analysis model.
ContributorsWang, Yilin (Author) / Li, Baoxin (Thesis advisor) / Liu, Huan (Committee member) / Tong, Hanghang (Committee member) / Chang, Yi (Committee member) / Arizona State University (Publisher)
Created2018
156887-Thumbnail Image.png
Description
Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for

Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for object segmentation and feature extraction for objects and actions recognition in video data, and sparse feature selection algorithms for medical image analysis, as well as automated feature extraction using convolutional neural network for blood cancer grading.

To detect and classify objects in video, the objects have to be separated from the background, and then the discriminant features are extracted from the region of interest before feeding to a classifier. Effective object segmentation and feature extraction are often application specific, and posing major challenges for object detection and classification tasks. In this dissertation, we address effective object flow based ROI generation algorithm for segmenting moving objects in video data, which can be applied in surveillance and self driving vehicle areas. Optical flow can also be used as features in human action recognition algorithm, and we present using optical flow feature in pre-trained convolutional neural network to improve performance of human action recognition algorithms. Both algorithms outperform the state-of-the-arts at their time.

Medical images and videos pose unique challenges for image understanding mainly due to the fact that the tissues and cells are often irregularly shaped, colored, and textured, and hand selecting most discriminant features is often difficult, thus an automated feature selection method is desired. Sparse learning is a technique to extract the most discriminant and representative features from raw visual data. However, sparse learning with \textit{L1} regularization only takes the sparsity in feature dimension into consideration; we improve the algorithm so it selects the type of features as well; less important or noisy feature types are entirely removed from the feature set. We demonstrate this algorithm to analyze the endoscopy images to detect unhealthy abnormalities in esophagus and stomach, such as ulcer and cancer. Besides sparsity constraint, other application specific constraints and prior knowledge may also need to be incorporated in the loss function in sparse learning to obtain the desired results. We demonstrate how to incorporate similar-inhibition constraint, gaze and attention prior in sparse dictionary selection for gastroscopic video summarization that enable intelligent key frame extraction from gastroscopic video data. With recent advancement in multi-layer neural networks, the automatic end-to-end feature learning becomes feasible. Convolutional neural network mimics the mammal visual cortex and can extract most discriminant features automatically from training samples. We present using convolutinal neural network with hierarchical classifier to grade the severity of Follicular Lymphoma, a type of blood cancer, and it reaches 91\% accuracy, on par with analysis by expert pathologists.

Developing real world computer vision applications is more than just developing core vision algorithms to extract and understand information from visual data; it is also subject to many practical requirements and constraints, such as hardware and computing infrastructure, cost, robustness to lighting changes and deformation, ease of use and deployment, etc.The general processing pipeline and system architecture for the computer vision based applications share many similar design principles and architecture. We developed common processing components and a generic framework for computer vision application, and a versatile scale adaptive template matching algorithm for object detection. We demonstrate the design principle and best practices by developing and deploying a complete computer vision application in real life, building a multi-channel water level monitoring system, where the techniques and design methodology can be generalized to other real life applications. The general software engineering principles, such as modularity, abstraction, robust to requirement change, generality, etc., are all demonstrated in this research.
ContributorsCao, Jun (Author) / Li, Baoxin (Thesis advisor) / Liu, Huan (Committee member) / Zhang, Yu (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2018
154464-Thumbnail Image.png
Description
The rapid growth of social media in recent years provides a large amount of user-generated visual objects, e.g., images and videos. Advanced semantic understanding approaches on such visual objects are desired to better serve applications such as human-machine interaction, image retrieval, etc. Semantic visual attributes have been proposed and utilized

The rapid growth of social media in recent years provides a large amount of user-generated visual objects, e.g., images and videos. Advanced semantic understanding approaches on such visual objects are desired to better serve applications such as human-machine interaction, image retrieval, etc. Semantic visual attributes have been proposed and utilized in multiple visual computing tasks to bridge the so-called "semantic gap" between extractable low-level feature representations and high-level semantic understanding of the visual objects.

Despite years of research, there are still some unsolved problems on semantic attribute learning. First, real-world applications usually involve hundreds of attributes which requires great effort to acquire sufficient amount of labeled data for model learning. Second, existing attribute learning work for visual objects focuses primarily on images, with semantic analysis on videos left largely unexplored.

In this dissertation I conduct innovative research and propose novel approaches to tackling the aforementioned problems. In particular, I propose robust and accurate learning frameworks on both attribute ranking and prediction by exploring the correlation among multiple attributes and utilizing various types of label information. Furthermore, I propose a video-based skill coaching framework by extending attribute learning to the video domain for robust motion skill analysis. Experiments on various types of applications and datasets and comparisons with multiple state-of-the-art baseline approaches confirm that my proposed approaches can achieve significant performance improvements for the general attribute learning problem.
ContributorsChen, Lin (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Wang, Yalin (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2016
158676-Thumbnail Image.png
Description
The rapid development in acquiring multimodal neuroimaging data provides opportunities to systematically characterize human brain structures and functions. For example, in the brain magnetic resonance imaging (MRI), a typical non-invasive imaging technique, different acquisition sequences (modalities) lead to the different descriptions of brain functional activities, or anatomical biomarkers. Nowadays, in

The rapid development in acquiring multimodal neuroimaging data provides opportunities to systematically characterize human brain structures and functions. For example, in the brain magnetic resonance imaging (MRI), a typical non-invasive imaging technique, different acquisition sequences (modalities) lead to the different descriptions of brain functional activities, or anatomical biomarkers. Nowadays, in addition to the traditional voxel-level analysis of images, there is a trend to process and investigate the cross-modality relationship in a high dimensional level of images, e.g. surfaces and networks.

In this study, I aim to achieve multimodal brain image fusion by referring to some intrinsic properties of data, e.g. geometry of embedding structures where the commonly used image features reside. Since the image features investigated in this study share an identical embedding space, i.e. either defined on a brain surface or brain atlas, where a graph structure is easy to define, it is straightforward to consider the mathematically meaningful properties of the shared structures from the geometry perspective.

I first introduce the background of multimodal fusion of brain image data and insights of geometric properties playing a potential role to link different modalities. Then, several proposed computational frameworks either using the solid and efficient geometric algorithms or current geometric deep learning models are be fully discussed. I show how these designed frameworks deal with distinct geometric properties respectively, and their applications in the real healthcare scenarios, e.g. to enhanced detections of fetal brain diseases or abnormal brain development.
ContributorsZhang, Wen (Author) / Wang, Yalin (Thesis advisor) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Braden, B. Blair (Committee member) / Arizona State University (Publisher)
Created2020
171764-Thumbnail Image.png
Description
This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework

This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework builds upon the Beltrami Coefficient (BC) description of quasiconformal mappings that directly quantifies local mapping (circles to ellipses) distortions between diffeomorphisms of boundary enclosed plane domains homeomorphic to the unit disk. A new map called the Beltrami Coefficient Map (BCM) was constructed to describe distortions in retinotopic maps. The BCM can be used to fully reconstruct the original target surface (retinal visual field) of retinotopic maps. This dissertation also compared retinotopic maps in the visual processing cascade, which is a series of connected retinotopic maps responsible for visual data processing of physical images captured by the eyes. By comparing the BCM results from a large Human Connectome project (HCP) retinotopic dataset (N=181), a new computational quasiconformal mapping description of the transformed retinal image as it passes through the cascade is proposed, which is not present in any current literature. The description applied on HCP data provided direct visible and quantifiable geometric properties of the cascade in a way that has not been observed before. Because retinotopic maps are generated from in vivo noisy functional magnetic resonance imaging (fMRI), quantifying them comes with a certain degree of uncertainty. To quantify the uncertainties in the quantification results, it is necessary to generate statistical models of retinotopic maps from their BCMs and raw fMRI signals. Considering that estimating retinotopic maps from real noisy fMRI time series data using the population receptive field (pRF) model is a time consuming process, a convolutional neural network (CNN) was constructed and trained to predict pRF model parameters from real noisy fMRI data
ContributorsTa, Duyan Nguyen (Author) / Wang, Yalin (Thesis advisor) / Lu, Zhong-Lin (Committee member) / Hansford, Dianne (Committee member) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2022
171440-Thumbnail Image.png
Description
Machine learning models and in specific, neural networks, are well known for being inscrutable in nature. From image classification tasks and generative techniques for data augmentation, to general purpose natural language models, neural networks are currently the algorithm of preference that is riding the top of the current artificial intelligence

Machine learning models and in specific, neural networks, are well known for being inscrutable in nature. From image classification tasks and generative techniques for data augmentation, to general purpose natural language models, neural networks are currently the algorithm of preference that is riding the top of the current artificial intelligence (AI) wave, having experienced the greatest boost in popularity above any other machine learning solution. However, due to their inscrutable design based on the optimization of millions of parameters, it is ever so complex to understand how their decision is influenced nor why (and when) they fail. While some works aim at explaining neural network decisions or making systems to be inherently interpretable the great majority of state of the art machine learning works prioritize performance over interpretability effectively becoming black boxes. Hence, there is still uncertainty in the decision boundaries of these already deployed solutions whose predictions should still be analyzed and taken with care. This becomes even more important when these models are used on sensitive scenarios such as medicine, criminal justice, settings with native inherent social biases or where egregious mispredictions can negatively impact the system or human trust down the line. Thus, the aim of this work is to provide a comprehensive analysis on the failure modes of the state of the art neural networks from three domains: large image classifiers and their misclassifications, generative adversarial networks when used for data augmentation and transformer networks applied to structured representations and reasoning about actions and change.
ContributorsOlmo Hernandez, Alberto (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Sengupta, Sailik (Committee member) / Arizona State University (Publisher)
Created2022
157818-Thumbnail Image.png
Description
Graph is a ubiquitous data structure, which appears in a broad range of real-world scenarios. Accordingly, there has been a surge of research to represent and learn from graphs in order to accomplish various machine learning and graph analysis tasks. However, most of these efforts only utilize the graph structure

Graph is a ubiquitous data structure, which appears in a broad range of real-world scenarios. Accordingly, there has been a surge of research to represent and learn from graphs in order to accomplish various machine learning and graph analysis tasks. However, most of these efforts only utilize the graph structure while nodes in real-world graphs usually come with a rich set of attributes. Typical examples of such nodes and their attributes are users and their profiles in social networks, scientific articles and their content in citation networks, protein molecules and their gene sets in biological networks as well as web pages and their content on the Web. Utilizing node features in such graphs---attributed graphs---can alleviate the graph sparsity problem and help explain various phenomena (e.g., the motives behind the formation of communities in social networks). Therefore, further study of attributed graphs is required to take full advantage of node attributes.

In the wild, attributed graphs are usually unlabeled. Moreover, annotating data is an expensive and time-consuming process, which suffers from many limitations such as annotators’ subjectivity, reproducibility, and consistency. The challenges of data annotation and the growing increase of unlabeled attributed graphs in various real-world applications significantly demand unsupervised learning for attributed graphs.

In this dissertation, I propose a set of novel models to learn from attributed graphs in an unsupervised manner. To better understand and represent nodes and communities in attributed graphs, I present different models in node and community levels. In node level, I utilize node features as well as the graph structure in attributed graphs to learn distributed representations of nodes, which can be useful in a variety of downstream machine learning applications. In community level, with a focus on social media, I take advantage of both node attributes and the graph structure to discover not only communities but also their sentiment-driven profiles and inter-community relations (i.e., alliance, antagonism, or no relation). The discovered community profiles and relations help to better understand the structure and dynamics of social media.
ContributorsSalehi, Amin (Author) / Davulcu, Hasan (Thesis advisor) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2019
157582-Thumbnail Image.png
Description
The rapid advancements of technology have greatly extended the ubiquitous nature of smartphones acting as a gateway to numerous social media applications. This brings an immense convenience to the users of these applications wishing to stay connected to other individuals through sharing their statuses, posting their opinions, experiences, suggestions, etc

The rapid advancements of technology have greatly extended the ubiquitous nature of smartphones acting as a gateway to numerous social media applications. This brings an immense convenience to the users of these applications wishing to stay connected to other individuals through sharing their statuses, posting their opinions, experiences, suggestions, etc on online social networks (OSNs). Exploring and analyzing this data has a great potential to enable deep and fine-grained insights into the behavior, emotions, and language of individuals in a society. This proposed dissertation focuses on utilizing these online social footprints to research two main threads – 1) Analysis: to study the behavior of individuals online (content analysis) and 2) Synthesis: to build models that influence the behavior of individuals offline (incomplete action models for decision-making).

A large percentage of posts shared online are in an unrestricted natural language format that is meant for human consumption. One of the demanding problems in this context is to leverage and develop approaches to automatically extract important insights from this incessant massive data pool. Efforts in this direction emphasize mining or extracting the wealth of latent information in the data from multiple OSNs independently. The first thread of this dissertation focuses on analytics to investigate the differentiated content-sharing behavior of individuals. The second thread of this dissertation attempts to build decision-making systems using social media data.

The results of the proposed dissertation emphasize the importance of considering multiple data types while interpreting the content shared on OSNs. They highlight the unique ways in which the data and the extracted patterns from text-based platforms or visual-based platforms complement and contrast in terms of their content. The proposed research demonstrated that, in many ways, the results obtained by focusing on either only text or only visual elements of content shared online could lead to biased insights. On the other hand, it also shows the power of a sequential set of patterns that have some sort of precedence relationships and collaboration between humans and automated planners.
ContributorsManikonda, Lydia (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / De Choudhury, Munmun (Committee member) / Kamar, Ece (Committee member) / Arizona State University (Publisher)
Created2019