This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

187633-Thumbnail Image.png
Description
Insufficient training data poses significant challenges to training a deep convolutional neural network (CNN) to solve a target task. One common solution to this problem is to use transfer learning with pre-trained networks to apply knowledge learned from one domain with sufficient data to a new domain with limited data

Insufficient training data poses significant challenges to training a deep convolutional neural network (CNN) to solve a target task. One common solution to this problem is to use transfer learning with pre-trained networks to apply knowledge learned from one domain with sufficient data to a new domain with limited data and avoid training a deep network from scratch. However, for such methods to work in a transfer learning setting, learned features from the source domain need to be generalizable to the target domain, which is not guaranteed since the feature space and distributions of the source and target data may be different. This thesis aims to explore and understand the use of orthogonal convolutional neural networks to improve learning of diverse, generic features that are transferable to a novel task. In this thesis, orthogonal regularization is used to pre-train deep CNNs to investigate if and how orthogonal convolution may improve feature extraction in transfer learning. Experiments using two limited medical image datasets in this thesis suggests that orthogonal regularization improves generality and reduces redundancy of learned features more effectively in certain deep networks for transfer learning. The results on feature selection and classification demonstrate the improvement in transferred features helps select more expressive features that improves generalization performance. To understand the effectiveness of orthogonal regularization on different architectures, this work studies the effects of residual learning on orthogonal convolution. Specifically, this work examines the presence of residual connections and its effects on feature similarities and show residual learning blocks help orthogonal convolution better preserve feature diversity across convolutional layers of a network and alleviate the increase in feature similarities caused by depth, demonstrating the importance of residual learning in making orthogonal convolution more effective.
ContributorsChan, Tsz (Author) / Li, Baoxin (Thesis advisor) / Liang, Jianming (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2023
158066-Thumbnail Image.png
Description
Recently, a well-designed and well-trained neural network can yield state-of-the-art results across many domains, including data mining, computer vision, and medical image analysis. But progress has been limited for tasks where labels are difficult or impossible to obtain. This reliance on exhaustive labeling is a critical limitation in the rapid

Recently, a well-designed and well-trained neural network can yield state-of-the-art results across many domains, including data mining, computer vision, and medical image analysis. But progress has been limited for tasks where labels are difficult or impossible to obtain. This reliance on exhaustive labeling is a critical limitation in the rapid deployment of neural networks. Besides, the current research scales poorly to a large number of unseen concepts and is passively spoon-fed with data and supervision.

To overcome the above data scarcity and generalization issues, in my dissertation, I first propose two unsupervised conventional machine learning algorithms, hyperbolic stochastic coding, and multi-resemble multi-target low-rank coding, to solve the incomplete data and missing label problem. I further introduce a deep multi-domain adaptation network to leverage the power of deep learning by transferring the rich knowledge from a large-amount labeled source dataset. I also invent a novel time-sequence dynamically hierarchical network that adaptively simplifies the network to cope with the scarce data.

To learn a large number of unseen concepts, lifelong machine learning enjoys many advantages, including abstracting knowledge from prior learning and using the experience to help future learning, regardless of how much data is currently available. Incorporating this capability and making it versatile, I propose deep multi-task weight consolidation to accumulate knowledge continuously and significantly reduce data requirements in a variety of domains. Inspired by the recent breakthroughs in automatically learning suitable neural network architectures (AutoML), I develop a nonexpansive AutoML framework to train an online model without the abundance of labeled data. This work automatically expands the network to increase model capability when necessary, then compresses the model to maintain the model efficiency.

In my current ongoing work, I propose an alternative method of supervised learning that does not require direct labels. This could utilize various supervision from an image/object as a target value for supervising the target tasks without labels, and it turns out to be surprisingly effective. The proposed method only requires few-shot labeled data to train, and can self-supervised learn the information it needs and generalize to datasets not seen during training.
ContributorsZhang, Jie (Author) / Wang, Yalin (Thesis advisor) / Liu, Huan (Committee member) / Stonnington, Cynthia (Committee member) / Liang, Jianming (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2020
158746-Thumbnail Image.png
Description
This work solves the problem of incorrect rotations while using handheld devices.Two new methods which improve upon previous works are explored. The first method
uses an infrared camera to capture and detect the user’s face position and orient the
display accordingly. The second method utilizes gyroscopic and accelerometer data
as input to a

This work solves the problem of incorrect rotations while using handheld devices.Two new methods which improve upon previous works are explored. The first method
uses an infrared camera to capture and detect the user’s face position and orient the
display accordingly. The second method utilizes gyroscopic and accelerometer data
as input to a machine learning model to classify correct and incorrect rotations.
Experiments show that these new methods achieve an overall success rate of 67%
for the first and 92% for the second which reaches a new high for this performance
category. The paper also discusses logistical and legal reasons for implementing this
feature into an end-user product from a business perspective. Lastly, the monetary
incentive behind a feature like irRotate in a consumer device and explore related
patents is discussed.
ContributorsTallman, Riley (Author) / Yang, Yezhou (Thesis advisor) / Liang, Jianming (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2020
157633-Thumbnail Image.png
Description
The ubiquity of single camera systems in society has made improving monocular depth estimation a topic of increasing interest in the broader computer vision community. Inspired by recent work in sparse-to-dense depth estimation, this thesis focuses on sparse patterns generated from feature detection based algorithms as opposed to regular grid

The ubiquity of single camera systems in society has made improving monocular depth estimation a topic of increasing interest in the broader computer vision community. Inspired by recent work in sparse-to-dense depth estimation, this thesis focuses on sparse patterns generated from feature detection based algorithms as opposed to regular grid sparse patterns used by previous work. This work focuses on using these feature-based sparse patterns to generate additional depth information by interpolating regions between clusters of samples that are in close proximity to each other. These interpolated sparse depths are used to enforce additional constraints on the network’s predictions. In addition to the improved depth prediction performance observed from incorporating the sparse sample information in the network compared to pure RGB-based methods, the experiments show that actively retraining a network on a small number of samples that deviate most from the interpolated sparse depths leads to better depth prediction overall.

This thesis also introduces a new metric, titled Edge, to quantify model performance in regions of an image that show the highest change in ground truth depth values along either the x-axis or the y-axis. Existing metrics in depth estimation like Root Mean Square Error(RMSE) and Mean Absolute Error(MAE) quantify model performance across the entire image and don’t focus on specific regions of an image that are hard to predict. To this end, the proposed Edge metric focuses specifically on these hard to classify regions. The experiments also show that using the Edge metric as a small addition to existing loss functions like L1 loss in current state-of-the-art methods leads to vastly improved performance in these hard to classify regions, while also improving performance across the board in every other metric.
ContributorsRai, Anshul (Author) / Yang, Yezhou (Thesis advisor) / Zhang, Wenlong (Committee member) / Liang, Jianming (Committee member) / Arizona State University (Publisher)
Created2019