This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

154572-Thumbnail Image.png
Description
This work examines two main areas in model-based time-varying signal processing with emphasis in speech processing applications. The first area concentrates on improving speech intelligibility and on increasing the proposed methodologies application for clinical practice in speech-language pathology. The second area concentrates on signal expansions matched to physical-based models but

This work examines two main areas in model-based time-varying signal processing with emphasis in speech processing applications. The first area concentrates on improving speech intelligibility and on increasing the proposed methodologies application for clinical practice in speech-language pathology. The second area concentrates on signal expansions matched to physical-based models but without requiring independent basis functions; the significance of this work is demonstrated with speech vowels.

A fully automated Vowel Space Area (VSA) computation method is proposed that can be applied to any type of speech. It is shown that the VSA provides an efficient and reliable measure and is correlated to speech intelligibility. A clinical tool that incorporates the automated VSA was proposed for evaluation and treatment to be used by speech language pathologists. Two exploratory studies are performed using two databases by analyzing mean formant trajectories in healthy speech for a wide range of speakers, dialects, and coarticulation contexts. It is shown that phonemes crowded in formant space can often have distinct trajectories, possibly due to accurate perception.

A theory for analyzing time-varying signals models with amplitude modulation and frequency modulation is developed. Examples are provided that demonstrate other possible signal model decompositions with independent basis functions and corresponding physical interpretations. The Hilbert transform (HT) and the use of the analytic form of a signal are motivated, and a proof is provided to show that a signal can still preserve desirable mathematical properties without the use of the HT. A visualization of the Hilbert spectrum is proposed to aid in the interpretation. A signal demodulation is proposed and used to develop a modified Empirical Mode Decomposition (EMD) algorithm.
ContributorsSandoval, Steven, 1984- (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Liss, Julie M (Committee member) / Turaga, Pavan (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2016
190759-Thumbnail Image.png
Description
This thesis presents robust and novel solutions using knowledge distillation with geometric approaches and multimodal data that can address the current challenges in deep learning, providing a comprehensive understanding of the learning process involved in knowledge distillation. Deep learning has attained significant success in various applications, such as health and

This thesis presents robust and novel solutions using knowledge distillation with geometric approaches and multimodal data that can address the current challenges in deep learning, providing a comprehensive understanding of the learning process involved in knowledge distillation. Deep learning has attained significant success in various applications, such as health and wellness promotion, smart homes, and intelligent surveillance. In general, stacking more layers or increasing the number of trainable parameters causes deep networks to exhibit improved performance. However, this causes the model to become large, resulting in an additional need for computing and power resources for training, storage, and deployment. These are the core challenges in incorporating such models into small devices with limited power and computational resources. In this thesis, robust solutions aimed at addressing the aforementioned challenges are presented. These proposed methodologies and algorithmic contributions enhance the performance and efficiency of deep learning models. The thesis encompasses a comprehensive exploration of knowledge distillation, an approach that holds promise for creating compact models from high-capacity ones, while preserving their performance. This exploration covers diverse datasets, including both time series and image data, shedding light on the pivotal role of augmentation methods in knowledge distillation. The effects of these methods are rigorously examined through empirical experiments. Furthermore, the study within this thesis delves into the efficient utilization of features derived from two different teacher models, each trained on dissimilar data representations, including time-series and image data. Through these investigations, I present novel approaches to knowledge distillation, leveraging geometric techniques for the analysis of multimodal data. These solutions not only address real-world challenges but also offer valuable insights and recommendations for modeling in new applications.
ContributorsJeon, Eunsom (Author) / Turaga, Pavan (Thesis advisor) / Li, Baoxin (Committee member) / Lee, Hyunglae (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2023