This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 42
Filtering by

Clear all filters

152143-Thumbnail Image.png
Description
Radio frequency (RF) transceivers require a disproportionately high effort in terms of test development time, test equipment cost, and test time. The relatively high test cost stems from two contributing factors. First, RF transceivers require the measurement of a diverse set of specifications, requiring multiple test set-ups and long test

Radio frequency (RF) transceivers require a disproportionately high effort in terms of test development time, test equipment cost, and test time. The relatively high test cost stems from two contributing factors. First, RF transceivers require the measurement of a diverse set of specifications, requiring multiple test set-ups and long test times, which complicates load-board design, debug, and diagnosis. Second, high frequency operation necessitates the use of expensive equipment, resulting in higher per second test time cost compared with mixed-signal or digital circuits. Moreover, in terms of the non-recurring engineering cost, the need to measure complex specfications complicates the test development process and necessitates a long learning process for test engineers. Test time is dominated by changing and settling time for each test set-up. Thus, single set-up test solutions are desirable. Loop-back configuration where the transmitter output is connected to the receiver input are used as the desirable test set- up for RF transceivers, since it eliminates the reliance on expensive instrumentation for RF signal analysis and enables measuring multiple parameters at once. In-phase and Quadrature (IQ) imbalance, non-linearity, DC offset and IQ time skews are some of the most detrimental imperfections in transceiver performance. Measurement of these parameters in the loop-back mode is challenging due to the coupling between the receiver (RX) and transmitter (TX) parameters. Loop-back based solutions are proposed in this work to resolve this issue. A calibration algorithm for a subset of the above mentioned impairments is also presented. Error Vector Magnitude (EVM) is a system-level parameter that is specified for most advanced communication standards. EVM measurement often takes extensive test development efforts, tester resources, and long test times. EVM is analytically related to system impairments, which are typically measured in a production test i environment. Thus, EVM test can be eliminated from the test list if the relations between EVM and system impairments are derived independent of the circuit implementation and manufacturing process. In this work, the focus is on the WLAN standard, and deriving the relations between EVM and three of the most detrimental impairments for QAM/OFDM based systems (IQ imbalance, non-linearity, and noise). Having low cost test techniques for measuring the RF transceivers imperfections and being able to analytically compute EVM from the measured parameters is a complete test solution for RF transceivers. These techniques along with the proposed calibration method can be used in improving the yield by widening the pass/fail boundaries for transceivers imperfections. For all of the proposed methods, simulation and hardware measurements prove that the proposed techniques provide accurate characterization of RF transceivers.
ContributorsNassery, Afsaneh (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
152259-Thumbnail Image.png
Description
Synchronous buck converters have become the obvious choice of design for high efficiency voltage down-conversion applications and find wide scale usage in today's IC industry. The use of digital control in synchronous buck converters is becoming increasingly popular because of its associated advantages over traditional analog counterparts in terms of

Synchronous buck converters have become the obvious choice of design for high efficiency voltage down-conversion applications and find wide scale usage in today's IC industry. The use of digital control in synchronous buck converters is becoming increasingly popular because of its associated advantages over traditional analog counterparts in terms of design flexibility, reduced use of off-chip components, and better programmability to enable advanced controls. They also demonstrate better immunity to noise, enhances tolerance to the process, voltage and temperature (PVT) variations, low chip area and as a result low cost. It enables processing in digital domain requiring a need of analog-digital interfacing circuit viz. Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC). A Digital to Pulse Width Modulator (DPWM) acts as time domain DAC required in the control loop to modulate the ON time of the Power-MOSFETs. The accuracy and efficiency of the DPWM creates the upper limit to the steady state voltage ripple of the DC - DC converter and efficiency in low load conditions. This thesis discusses the prevalent architectures for DPWM in switched mode DC - DC converters. The design of a Hybrid DPWM is presented. The DPWM is 9-bit accurate and is targeted for a Synchronous Buck Converter with a switching frequency of 1.0 MHz. The design supports low power mode(s) for the buck converter in the Pulse Frequency Modulation (PFM) mode as well as other fail-safe features. The design implementation is digital centric making it robust across PVT variations and portable to lower technology nodes. Key target of the design is to reduce design time. The design is tested across large Process (+/- 3σ), Voltage (1.8V +/- 10%) and Temperature (-55.0 °C to 125 °C) and is in the process of tape-out.
ContributorsKumar, Amit (Author) / Bakkaloglu, Bertan (Thesis advisor) / Song, Hongjiang (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
152044-Thumbnail Image.png
Description
Doppler radar can be used to measure respiration and heart rate without contact and through obstacles. In this work, a Doppler radar architecture at 2.4 GHz and a new signal processing algorithm to estimate the respiration and heart rate are presented. The received signal is dominated by the transceiver noise,

Doppler radar can be used to measure respiration and heart rate without contact and through obstacles. In this work, a Doppler radar architecture at 2.4 GHz and a new signal processing algorithm to estimate the respiration and heart rate are presented. The received signal is dominated by the transceiver noise, LO phase noise and clutter which reduces the signal-to-noise ratio of the desired signal. The proposed architecture and algorithm are used to mitigate these issues and obtain an accurate estimate of the heart and respiration rate. Quadrature low-IF transceiver architecture is adopted to resolve null point problem as well as avoid 1/f noise and DC offset due to mixer-LO coupling. Adaptive clutter cancellation algorithm is used to enhance receiver sensitivity coupled with a novel Pattern Search in Noise Subspace (PSNS) algorithm is used to estimate respiration and heart rate. PSNS is a modified MUSIC algorithm which uses the phase noise to enhance Doppler shift detection. A prototype system was implemented using off-the-shelf TI and RFMD transceiver and tests were conduct with eight individuals. The measured results shows accurate estimate of the cardio pulmonary signals in low-SNR conditions and have been tested up to a distance of 6 meters.
ContributorsKhunti, Hitesh Devshi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Bliss, Daniel (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
152918-Thumbnail Image.png
Description
Isolated DC/DC converters are used to provide electrical isolation between two supply domain systems. A fully integrated isolated DC/DC converter having no board-level components and fabricated using standard integrated circuits (IC) process is highly desirable in order to increase the system reliability and reduce costs. The isolation between the low-voltage

Isolated DC/DC converters are used to provide electrical isolation between two supply domain systems. A fully integrated isolated DC/DC converter having no board-level components and fabricated using standard integrated circuits (IC) process is highly desirable in order to increase the system reliability and reduce costs. The isolation between the low-voltage side and high-voltage side of the converter is realized by a transformer that transfers energy while blocking the DC loop. The resonant mode power oscillator is used to enable high efficiency power transfer. The on-chip transformer is expected to have high coil inductance, high quality factors and high coupling coefficient to reduce the loss in the oscillation. The performance of a transformer is highly dependent on the vertical structure, horizontal geometry and other indispensable structures that make it compatible with the IC process such as metal fills and patterned ground shield (PGS). With the help of three-dimensional (3-D) electro-magnetic (EM) simulation software, the 3-D transformer model is simulated and the simulation result is got with high accuracy.

In this thesis an on-chip transformer for a fully integrated DC/DC converter using standard IC process is developed. Different types of transformers are modeled and simulated in HFSS. The performances are compared to select the optimum design. The effects of the additional structures including PGS and metal fills are also simulated. The transformer is tested with a network analyzer and the testing results show a good consistency with the simulation results when taking the chip traces, printed circuit board (PCB) traces, bond wires and SMA connectors into account.
ContributorsZhao, Yao (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
152922-Thumbnail Image.png
Description
Photovoltaic (PV) systems are affected by converter losses, partial shading and other mismatches in the panels. This dissertation introduces a sub-panel maximum power point tracking (MPPT) architecture together with an integrated CMOS current sensor circuit on a chip to reduce the mismatch effects, losses and increase the efficiency of the

Photovoltaic (PV) systems are affected by converter losses, partial shading and other mismatches in the panels. This dissertation introduces a sub-panel maximum power point tracking (MPPT) architecture together with an integrated CMOS current sensor circuit on a chip to reduce the mismatch effects, losses and increase the efficiency of the PV system. The sub-panel MPPT increases the efficiency of the PV during the shading and replaces the bypass diodes in the panels with an integrated MPPT and DC-DC regulator. For the integrated MPPT and regulator, the research developed an integrated standard CMOS low power and high common mode range Current-to-Digital Converter (IDC) circuit and its application for DC-DC regulator and MPPT. The proposed charge based CMOS switched-capacitor circuit directly digitizes the output current of the DC-DC regulator without an analog-to-digital converter (ADC) and the need for high-voltage process technology. Compared to the resistor based current-sensing methods that requires current-to-voltage circuit, gain block and ADC, the proposed CMOS IDC is a low-power efficient integrated circuit that achieves high resolution, lower complexity, and lower power consumption. The IDC circuit is fabricated on a 0.7 um CMOS process, occupies 2mm x 2mm and consumes less than 27mW. The IDC circuit has been tested and used for boost DC-DC regulator and MPPT for photo-voltaic system. The DC-DC converter has an efficiency of 95%. The sub-module level power optimization improves the output power of a shaded panel by up to 20%, compared to panel MPPT with bypass diodes.
ContributorsMarti-Arbona, Edgar (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2014
152924-Thumbnail Image.png
Description
Modern day deep sub-micron SOC architectures often demand very low supply noise levels. As supply voltage decreases with decreasing deep sub-micron gate length, noise on the power supply starts playing a dominant role in noise-sensitive analog blocks, especially high precision ADC, PLL, and RF SOC's. Most handheld and portable applications

Modern day deep sub-micron SOC architectures often demand very low supply noise levels. As supply voltage decreases with decreasing deep sub-micron gate length, noise on the power supply starts playing a dominant role in noise-sensitive analog blocks, especially high precision ADC, PLL, and RF SOC's. Most handheld and portable applications and highly sensitive medical instrumentation circuits tend to use low noise regulators as on-chip or on board power supply. Nonlinearities associated with LNA's, mixers and oscillators up-convert low frequency noise with the signal band. Specifically, synthesizer and TCXO phase noise, LNA and mixer noise figure, and adjacent channel power ratios of the PA are heavily influenced by the supply noise and ripple. This poses a stringent requirement on a very low noise power supply with high accuracy and fast transient response. Low Dropout (LDO) regulators are preferred over switching regulators for these applications due to their attractive low noise and low ripple features. LDO's shield sensitive blocks from high frequency fluctuations on the power supply while providing high accuracy, fast response supply regulation.

This research focuses on developing innovative techniques to reduce the noise of any generic wideband LDO, stable with or without load capacitor. The proposed techniques include Switched RC Filtering to reduce the Bandgap Reference noise, Current Mode Chopping to reduce the Error Amplifier noise & MOS-R based RC filter to reduce the noise due to bias current. The residual chopping ripple was reduced using a Switched Capacitor notch filter. Using these techniques, the integrated noise of a wideband LDO was brought down to 15µV in the integration band of 10Hz to 100kHz. These techniques can be integrated into any generic LDO without any significant area overhead.
ContributorsMagod Ramakrishna, Raveesh (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
152991-Thumbnail Image.png
Description
Several state of the art, monitoring and control systems, such as DC motor

controllers, power line monitoring and protection systems, instrumentation systems and battery monitors require direct digitization of a high voltage input signals. Analog-to-Digital Converters (ADCs) that can digitize high voltage signals require high linearity and low voltage coefficient capacitors.

Several state of the art, monitoring and control systems, such as DC motor

controllers, power line monitoring and protection systems, instrumentation systems and battery monitors require direct digitization of a high voltage input signals. Analog-to-Digital Converters (ADCs) that can digitize high voltage signals require high linearity and low voltage coefficient capacitors. A built in self-calibration and digital-trim algorithm correcting static mismatches in Capacitive Digital-to-Analog Converter (CDAC) used in Successive Approximation Register Analog to Digital Converters (SARADCs) is proposed. The algorithm uses a dynamic error correction (DEC) capacitor to cancel the static errors occurring in each capacitor of the array as the first step upon power-up and eliminates the need for an extra calibration DAC. Self-trimming is performed digitally during normal ADC operation. The algorithm is implemented on a 14-bit high-voltage input range SAR ADC with integrated dynamic error correction capacitors. The IC is fabricated in 0.6-um high voltage compliant CMOS process, accepting up to 24Vpp differential input signal. The proposed approach achieves 73.32 dB Signal to Noise and Distortion Ratio (SNDR) which is an improvement of 12.03 dB after self-calibration at 400 kS/s sampling rate, consuming 90-mW from a +/-15V supply. The calibration circuitry occupies 28% of the capacitor DAC, and consumes less than 15mW during operation. Measurement results shows that this algorithm reduces INL from as high as 7 LSBs down to 1 LSB and it works even in the presence of larger mismatches exceeding 260 LSBs. Similarly, it reduces DNL errors from 10 LSBs down to 1 LSB. The ADC occupies an active area of 9.76 mm2.
ContributorsThirunakkarasu, Shankar (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Kozicki, Michael (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
153036-Thumbnail Image.png
Description
High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area

High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area is required to meet matching requirements for optimal linearity and thus, the overall speed of the DAC is limited.

In this thesis work, a 12-bit current-steering DAC was designed with current sources scaled below the required matching size to decrease the area and increase the overall speed of the DAC. By scaling the current sources, however, errors due to random mismatch between current sources will arise and additional calibration hardware is necessary to ensure 12-bit linearity. This work presents how to implement a self-calibration DAC that works to fix amplitude errors while maintaining a lower overall area. Additionally, the DAC designed in this thesis investigates the implementation feasibility of a data-interleaved architecture. Data interleaving can increase the total bandwidth of the DACs by 2 with an increase in SQNR by an additional 3 dB.

The final results show that the calibration method can effectively improve the linearity of the DAC. The DAC is able to run up to 400 MSPS frequencies with a 75 dB SFDR performance and above 87 dB SFDR performance at update rates of 200 MSPS.
ContributorsJankunas, Benjamin (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2014
153227-Thumbnail Image.png
Description
Negative Bias Temperature Instability (NBTI) is commonly seen in p-channel transistors under negative gate voltages at an elevated temperature. The interface traps, oxide traps and NBTI mechanisms are discussed and their effect on circuit degradation and results are discussed. This thesis focuses on developing a model for simulating impact of

Negative Bias Temperature Instability (NBTI) is commonly seen in p-channel transistors under negative gate voltages at an elevated temperature. The interface traps, oxide traps and NBTI mechanisms are discussed and their effect on circuit degradation and results are discussed. This thesis focuses on developing a model for simulating impact of NBTI effects at circuit level. The model mimics the effects of degradation caused by the defects.

The NBTI model developed in this work is validated and sanity checked by using the simulation data from silvaco and gives excellent results. Furthermore the susceptibility of CMOS circuits such as the CMOS inverter, and a ring oscillator to NBTI is investigated. The results show that the oscillation frequency of a ring oscillator decreases and the SET pulse broadens with the NBTI.
ContributorsPadala, Sudheer (Author) / Barnaby, Hugh (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
153820-Thumbnail Image.png
Description
Power Management circuits are employed in almost all electronic equipment and they have energy storage elements (capacitors and inductors) as building blocks along with other active circuitry. Power management circuits employ feedback to achieve good load and line regulation. The feedback loop is designed at an operating point and component

Power Management circuits are employed in almost all electronic equipment and they have energy storage elements (capacitors and inductors) as building blocks along with other active circuitry. Power management circuits employ feedback to achieve good load and line regulation. The feedback loop is designed at an operating point and component values are chosen to meet that design requirements. But the capacitors and inductors are subject to variations due to temperature, aging and load stress. Due to these variations, the feedback loop can cross its robustness margins and can lead to degraded performance and potential instability. Another issue in power management circuits is the measurement of their frequency response for stability assessment. The standard techniques used in production test environment require expensive measurement equipment (Network Analyzer) and time. These two issues of component variations and frequency response measurement can be addressed if the frequency response of the power converter is used as measure of component (capacitor and inductor) variations. So, a single solution of frequency response measurement solves both the issues. This work examines system identification (frequency response measurement) of power management circuits based on cross correlation technique and proposes the use of switched capacitor correlator for this purpose. A switched capacitor correlator has been designed and used in the system identification of Linear and Switching regulators. The obtained results are compared with the standard frequency response measurement methods of power converters.
ContributorsMalladi, Venkata Naga Koushik (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2015