This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 28
Filtering by

Clear all filters

152143-Thumbnail Image.png
Description
Radio frequency (RF) transceivers require a disproportionately high effort in terms of test development time, test equipment cost, and test time. The relatively high test cost stems from two contributing factors. First, RF transceivers require the measurement of a diverse set of specifications, requiring multiple test set-ups and long test

Radio frequency (RF) transceivers require a disproportionately high effort in terms of test development time, test equipment cost, and test time. The relatively high test cost stems from two contributing factors. First, RF transceivers require the measurement of a diverse set of specifications, requiring multiple test set-ups and long test times, which complicates load-board design, debug, and diagnosis. Second, high frequency operation necessitates the use of expensive equipment, resulting in higher per second test time cost compared with mixed-signal or digital circuits. Moreover, in terms of the non-recurring engineering cost, the need to measure complex specfications complicates the test development process and necessitates a long learning process for test engineers. Test time is dominated by changing and settling time for each test set-up. Thus, single set-up test solutions are desirable. Loop-back configuration where the transmitter output is connected to the receiver input are used as the desirable test set- up for RF transceivers, since it eliminates the reliance on expensive instrumentation for RF signal analysis and enables measuring multiple parameters at once. In-phase and Quadrature (IQ) imbalance, non-linearity, DC offset and IQ time skews are some of the most detrimental imperfections in transceiver performance. Measurement of these parameters in the loop-back mode is challenging due to the coupling between the receiver (RX) and transmitter (TX) parameters. Loop-back based solutions are proposed in this work to resolve this issue. A calibration algorithm for a subset of the above mentioned impairments is also presented. Error Vector Magnitude (EVM) is a system-level parameter that is specified for most advanced communication standards. EVM measurement often takes extensive test development efforts, tester resources, and long test times. EVM is analytically related to system impairments, which are typically measured in a production test i environment. Thus, EVM test can be eliminated from the test list if the relations between EVM and system impairments are derived independent of the circuit implementation and manufacturing process. In this work, the focus is on the WLAN standard, and deriving the relations between EVM and three of the most detrimental impairments for QAM/OFDM based systems (IQ imbalance, non-linearity, and noise). Having low cost test techniques for measuring the RF transceivers imperfections and being able to analytically compute EVM from the measured parameters is a complete test solution for RF transceivers. These techniques along with the proposed calibration method can be used in improving the yield by widening the pass/fail boundaries for transceivers imperfections. For all of the proposed methods, simulation and hardware measurements prove that the proposed techniques provide accurate characterization of RF transceivers.
ContributorsNassery, Afsaneh (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
151299-Thumbnail Image.png
Description
Asymptotic and Numerical methods are popular in applied electromagnetism. In this work, the two methods are applied for collimated antennas and calibration targets, respectively. As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is developed for design and simulation of collimated multi-reflector antenna systems, based upon Huygens principle and

Asymptotic and Numerical methods are popular in applied electromagnetism. In this work, the two methods are applied for collimated antennas and calibration targets, respectively. As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is developed for design and simulation of collimated multi-reflector antenna systems, based upon Huygens principle and independent Gaussian beam expansion, referred to as the frames. To simulate a reflector antenna in hundreds to thousands of wavelength, it requires 1E7 - 1E9 independent Gaussian beams. To this end, high performance parallel computing is implemented, based on Message Passing Interface (MPI). The second part of the dissertation includes the plane wave scattering from a target consisting of doubly periodic array of sharp conducting circular cones by the magnetic field integral equation (MFIE) via Coiflet based Galerkin's procedure in conjunction with the Floquet theorem. Owing to the orthogonally, compact support, continuity and smoothness of the Coiflets, well-conditioned impedance matrices are obtained. Majority of the matrix entries are obtained in the spectral domain by one-point quadrature with high precision. For the oscillatory entries, spatial domain computation is applied, bypassing the slow convergence of the spectral summation of the non-damping propagating modes. The simulation results are compared with the solutions from an RWG-MLFMA based commercial software, FEKO, and excellent agreement is observed.
ContributorsWang, Le, 1975- (Author) / Pan, George (Thesis advisor) / Yu, Hongyu (Committee member) / Aberle, James T., 1961- (Committee member) / Diaz, Rodolfo (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2012
190915-Thumbnail Image.png
Description
Impedance is one of the fundamental properties of electrical components, materials, and waves. Therefore, impedance measurement and monitoring have a wide range of applications. The multi-port technique is a natural candidate for impedance measurement and monitoring due to its low overhead and ease of implementation for Built-in Self-Test (BIST) applications.

Impedance is one of the fundamental properties of electrical components, materials, and waves. Therefore, impedance measurement and monitoring have a wide range of applications. The multi-port technique is a natural candidate for impedance measurement and monitoring due to its low overhead and ease of implementation for Built-in Self-Test (BIST) applications. The multi-port technique can measure complex reflection coefficients, thus impedance, by using scalar measurements provided by the power detectors. These power detectors are strategically placed on different points (ports) of a passive network to produce unique solution. Impedance measurement and monitoring is readily deployed on mobile phone radio-frequency (RF) front ends, and are combined with antenna tuners to boost the signal reception capabilities of phones. These sensors also can be used in self-healing circuits to improve their yield and performance under process, voltage, and temperature variations. Even though, this work is preliminary interested in low-overhead impedance measurement for RF circuit applications, the proposed methods can be used in a wide variety of metrology applications where impedance measurements are already used. Some examples of these applications include determining material properties, plasma generation, and moisture detection. Additionally, multi-port applications extend beyond the impedance measurement. There are applications where multi-ports are used as receivers for communication systems, RADARs, and remote sensing applications. The multi-port technique generally requires a careful design of the testing structure to produce a unique solution from power detector measurements. It also requires the use of nonlinear solvers during calibration, and depending on calibration procedure, measurement. The use of nonlinear solvers generates issues for convergence, computational complexity, and resources needed for carrying out calibrations and measurements in a timely manner. In this work, using periodic structures, a structure where a circuit block repeats itself, for multi-port measurements is proposed. The periodic structures introduce a new constraint that simplifies the multi-port theory and leads to an explicit calibration and measurement procedure. Unlike the existing calibration procedures which require at least five loads and various constraints on the load for explicit solution, the proposed method can use three loads for calibration. Multi-ports built with periodic structures will always produce a unique measurement result. This leads to increased bandwidth of operation and simplifies design procedure. The efficacy of the method demonstrated in two embodiments. In the first embodiment, a multi-port is directly embedded into a matching network to measure impedance of the load. In the second embodiment, periodic structures are used to compare two loads without requiring any calibration.
ContributorsAvci, Muslum Emir (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2023
187583-Thumbnail Image.png
Description
Modern-day automobiles are becoming more connected and reliant on wireless connectivity. Thus, automotive electronics can be both a cause of and highly sensitive to electromagnetic interference (EMI), and the consequences of failure can be fatal. Technology advancements in engineering have brought several features into the automotive field but at the

Modern-day automobiles are becoming more connected and reliant on wireless connectivity. Thus, automotive electronics can be both a cause of and highly sensitive to electromagnetic interference (EMI), and the consequences of failure can be fatal. Technology advancements in engineering have brought several features into the automotive field but at the expense of electromagnetic compatibility issues. Automotive EMC problems are the result of the emissions from electronic assemblies inside a vehicle and the susceptibility of the electronics when exposed to external EMI sources. In both cases, automotive EMC problems can cause unintended changes in the automotive system operation. Robustness to electromagnetic interference (EMI) is one of the primary design aspects of state-of-the-art automotive ICs like System Basis Chips (SBCs) which provide a wide range of analog, power regulation and digital functions on the same die. One of the primary sources of conducted EMI on the Local Interconnect Network (LIN) driver output is an integrated switching DC-DC regulator noise coupling through the parasitic substrate capacitance of the SBC. In this dissertation an adaptive active EMI cancellation technique to cancel the switching noise of the DC-DC regulator on the LIN driver output to ensure electromagnetic compatibility (EMC) is presented. The proposed active EMI cancellation circuit synthesizes a phase synchronized cancellation pulse which is then injected onto the LIN driver output using an on-chip tunable capacitor array to cancel the switching noise injected via the substrate. The proposed EMI reduction technique can track and cancel substrate noise independent of process technology and device parasitics, input voltage, duty cycle, and loading conditions of the DC-DC switching regulator. The EMI cancellation system is designed and fabricated on a 180nm Bipolar-CMOS-DMOS (BCD) process with an integrated power stage of a DC-DC buck regulator at a switching frequency of 2MHz along with an automotive LIN driver. The EMI cancellation circuit occupies an area of 0.7 mm2, which is less than 3% of the overall area in a standard SBC and consumes 12.5 mW of power and achieves 25 dB reduction of conducted EMI in the LIN driver output’s power spectrum at the switching frequency and its harmonics.
ContributorsRay, Abhishek (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Kitchen, Jennifer (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2023
168397-Thumbnail Image.png
Description
The development of portable electronic systems has been a fundamental factor to the emergence of new applications including ubiquitous smart devices, self-driving vehicles. Power-Management Integrated Circuits (PMICs) which are a key component of such systems must maintain high efficiency and reliability for the final system to be appealing from a

The development of portable electronic systems has been a fundamental factor to the emergence of new applications including ubiquitous smart devices, self-driving vehicles. Power-Management Integrated Circuits (PMICs) which are a key component of such systems must maintain high efficiency and reliability for the final system to be appealing from a size and cost perspective. As technology advances, such portable systems require high output currents at low voltages from their PMICs leading to thermal reliability concerns. The reliability and power integrity of PMICs in such systems also degrades when operated in harsh environments. This dissertation presents solutions to solve two such reliability problems.The first part of this work presents a scalable, daisy-chain solution to parallelize multiple low-dropout linear (LDO) regulators to increase the total output current at low voltages. This printed circuit board (PCB) friendly approach achieves output current sharing without the need for any off-chip active or passive components or matched PCB traces thus reducing the overall system cost. Fully integrated current sensing based on dynamic element matching eliminates the need for any off-chip current sensing components. A current sharing accuracy of 2.613% and 2.789% for output voltages of 3V and 1V respectively and an output current of 2A per LDO are measured for the parallel LDO system implemented in a 0.18μm process. Thermal images demonstrate that the parallel LDO system achieves thermal equilibrium and stable reliable operation. The remainder of the thesis deals with time-domain switching regulators for high-reliability applications. A time-domain based buck and boost controller with time as the processing variable is developed for use in harsh environments. The controller features adaptive on-time / off-time generation for quasi-constant switching frequency and a time-domain comparator to implement current-mode hysteretic control. A triple redundant bandgap reference is also developed to mitigate the effects of radiation. Measurement results are showcased for a buck and boost converter with a common controller IC implemented in a 0.18μm process and an external power stage. The converter achieves a peak efficiency of 92.22% as a buck for an output current of 5A and an output voltage of 5V. Similarly, the converter achieves an efficiency of 95.97% as a boost for an output current of 1.25A and an output voltage of 30.4V.
ContributorsTalele, Bhushan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Seo, Jae-Sun (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2021
193368-Thumbnail Image.png
Description
In this dissertation, enhanced coherent detection of terahertz (THz) radiation is presented for Silicon integrated circuits (ICs). In general THz receivers implemented in silicon technologies face a challenge due to the high noise figure (NF) of the low noise amplifier (LNA) and low conversion gain of the radio frequency (RF)

In this dissertation, enhanced coherent detection of terahertz (THz) radiation is presented for Silicon integrated circuits (ICs). In general THz receivers implemented in silicon technologies face a challenge due to the high noise figure (NF) of the low noise amplifier (LNA) and low conversion gain of the radio frequency (RF) mixers. Moreover, issues with implementing local oscillators (LOs) further compound these challenges, including power driving mixes, distribution networks, and overall power consumption, particularly for large-scale arrays. To address these inherent obstacles, two notable cases of enhancing THz receiver performance are presented. In the Sideband Separation Receiver (SSR) for space-borne applications is introduced. Implemented in SiGe BiCMOS technology this broadband SSR boasts a high Image Rejection Ratio (IRR) exceeding 20 dB across 220 – 320 GHz. Employing a modified Weaver architecture, optimized for simultaneous spectral line observation, it utilizes an I/Q double down-conversion, pushing the technological boundaries of silicon and enabling large-scale focal plane array (FPA) deployment in space. Notably, the use of a sub-harmonic down-conversion mixer (SHM) significantly reduces LO power generation challenges, enhancing scalability while maintaining minimal NF. In the 4x4 FPA active THz imager, a dual-polarized patch antenna operating at 420 GHz utilizes orthogonal polarization for RF and LO signals, coupled with a coherent homodyne power detector. Realized in 0.13µm SiGe HBT technology, the power detector is co-designing with the antenna to ensure minimal crosstalk and achieving -30dB cross-polarization isolation. Illumination of the LO enhances power detector performance without on-chip routing complexities, enabling scalability to 1K pixel THz imagers. Each pixel achieves a Noise-Equivalent Power (NEP) of 1 pW/√Hz at 420 GHz, and integration with a readout and digital filter ensures high dynamic range. Furthermore, this study explores radiation hardening techniques to mitigate single-event effects (SEEs) in high-frequency receivers operating in space. Leveraging a W-band receiver in 90 nm SiGe BiCMOS technology, matching considerations and diverse modes of operation are employed to reduce SEE susceptibility. Transient current pulse modeling, validated through TCAD simulations, demonstrates the effectiveness of proposed techniques in substantially mitigating SETs within the proposed radiation-hardened-by-design (RHBD) receiver front-end.
ContributorsAl Seragi, Ebrahim (Author) / Zeinolabedinzadeh, Saeed (Thesis advisor) / Trichopoulos, Georgios (Committee member) / Bakkaloglu, Bertan (Committee member) / Aberle, James (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2024
187726-Thumbnail Image.png
Description
Handheld devices and personal laptops are becoming compact and complex every year with a demand to have higher power density, efficiency, and fast transient response. DC-DC boost converters are used in display and haptic drivers where the output voltage needs to be boosted higher than input voltage. The load transient

Handheld devices and personal laptops are becoming compact and complex every year with a demand to have higher power density, efficiency, and fast transient response. DC-DC boost converters are used in display and haptic drivers where the output voltage needs to be boosted higher than input voltage. The load transient response and unity gain bandwidth (UGB) of DC-DC boost converters are restricted by the presence of a right half plane zero (RHPZ). In this paper, a control scheme termed peak current fast feedback control (PFFC) is proposed to improve the load transient response without the need for additional power switches or passive components. The fast feedback (FFB) path is designed to achieve low output voltage change and fast settling time with the same UGB when compared to the conventional peak current mode control (CPCM). In the proposed PFFC method, the closed loop output impedance (ZOCL) is improved by reducing the DC value and by increasing the bandwidth of ZOCL as compared to conventional peak current mode control (CPCM), thus improving the steady state and transient performance. The fast feedback (FFB) path is implemented within the error amplifier (EA) with an increase of only 2% in the active area as compared to CPCM. The boost converter is designed for VOUT=5V, VIN=2.5V-4.4V and ILOAD=10mA-1A operating at a frequency of 2MHz. Measurement results show that with PFFC enabled, the settling time reduces by ~2.6X and the undershoot reduces by 62% to 12μs and 41mV respectively when compared to CPCM for 10mA to 1A load step at 2A/μs. The PFFC approach improves the settling time by 12X to 26us and reduces the overshoot by 56% to 56mV when compared to CPCM for 1A to 10mA load step at 2A/μs. The converter achieves a peak efficiency of 95.2% at 0.5W output power with VIN=4.4V and load regulation of 9mV/A at VIN=2.5V. The line transient response at VOUT=5V, ILOAD=700mA for VIN=3V ↔ 4V which is repeated at 280μs time period is 235mV and 245mV for CPCM and PFFC respectively.
ContributorsAlevoor, Shashank (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Sanyal, Arindham (Committee member) / Beohar, Navankur (Committee member) / Arizona State University (Publisher)
Created2023
156844-Thumbnail Image.png
Description
This dissertation proposes and presents two different passive sigma-delta

modulator zoom Analog to Digital Converter (ADC) architectures. The first ADC is fullydifferential, synthesizable zoom-ADC architecture with a passive loop filter for lowfrequency Built in Self-Test (BIST) applications. The detailed ADC architecture and a step

by step process designing the zoom-ADC along with

This dissertation proposes and presents two different passive sigma-delta

modulator zoom Analog to Digital Converter (ADC) architectures. The first ADC is fullydifferential, synthesizable zoom-ADC architecture with a passive loop filter for lowfrequency Built in Self-Test (BIST) applications. The detailed ADC architecture and a step

by step process designing the zoom-ADC along with a synthesis tool that can target various

design specifications are presented. The design flow does not rely on extensive knowledge

of an experienced ADC designer. Two example set of BIST ADCs have been synthesized

with different performance requirements in 65nm CMOS process. The first ADC achieves

90.4dB Signal to Noise Ratio (SNR) in 512µs measurement time and consumes 17µW

power. Another example achieves 78.2dB SNR in 31.25µs measurement time and

consumes 63µW power. The second ADC architecture is a multi-mode, dynamically

zooming passive sigma-delta modulator. The architecture is based on a 5b interpolating

flash ADC as the zooming unit, and a passive discrete time sigma delta modulator as the

fine conversion unit. The proposed ADC provides an Oversampling Ratio (OSR)-

independent, dynamic zooming technique, employing an interpolating zooming front-end.

The modulator covers between 0.1 MHz and 10 MHz signal bandwidth which makes it

suitable for cellular applications including 4G radio systems. By reconfiguring the OSR,

bias current, and component parameters, optimal power consumption can be achieved for

every mode. The ADC is implemented in 0.13 µm CMOS technology and it achieves an

SNDR of 82.2/77.1/74.2/68 dB for 0.1/1.92/5/10MHz bandwidth with 1.3/5.7/9.6/11.9mW

power consumption from a 1.2 V supply.
ContributorsEROL, OSMAN EMIR (Author) / Ozev, Sule (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ogras, Umit Y. (Committee member) / Blain-Christen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
156738-Thumbnail Image.png
Description
The increased adoption of Internet-of-Things (IoT) for various applications like smart home, industrial automation, connected vehicles, medical instrumentation, etc. has resulted in a large scale distributed network of sensors, accompanied by their power supply regulator modules, control and data transfer circuitry. Depending on the application, the sensor location can be

The increased adoption of Internet-of-Things (IoT) for various applications like smart home, industrial automation, connected vehicles, medical instrumentation, etc. has resulted in a large scale distributed network of sensors, accompanied by their power supply regulator modules, control and data transfer circuitry. Depending on the application, the sensor location can be virtually anywhere and therefore they are typically powered by a localized battery. To ensure long battery-life without replacement, the power consumption of the sensor nodes, the supply regulator and, control and data transmission unit, needs to be very low. Reduction in power consumption in the sensor, control and data transmission is typically done by duty-cycled operation such that they are on periodically only for short bursts of time or turn on only based on a trigger event and are otherwise powered down. These approaches reduce their power consumption significantly and therefore the overall system power is dominated by the consumption in the always-on supply regulator.

Besides having low power consumption, supply regulators for such IoT systems also need to have fast transient response to load current changes during a duty-cycled operation. Supply regulation using low quiescent current low dropout (LDO) regulators helps in extending the battery life of such power aware always-on applications with very long standby time. To serve as a supply regulator for such applications, a 1.24 µA quiescent current NMOS low dropout (LDO) is presented in this dissertation. This LDO uses a hybrid bias current generator (HBCG) to boost its bias current and improve the transient response. A scalable bias-current error amplifier with an on-demand buffer drives the NMOS pass device. The error amplifier is powered with an integrated dynamic frequency charge pump to ensure low dropout voltage. A low-power relaxation oscillator (LPRO) generates the charge pump clocks. Switched-capacitor pole tracking (SCPT) compensation scheme is proposed to ensure stability up to maximum load current of 150 mA for a low-ESR output capacitor range of 1 - 47µF. Designed in a 0.25 µm CMOS process, the LDO has an output voltage range of 1V – 3V, a dropout voltage of 240 mV, and a core area of 0.11 mm2.
ContributorsMagod Ramakrishna, Raveesh (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Kitchen, Jennifer (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2018
157182-Thumbnail Image.png
Description
There is an ever-increasing demand for higher bandwidth and data rate ensuing from exploding number of radio frequency integrated systems and devices. As stated in the Shannon-Hartley theorem, the maximum achievable data rate of a communication channel is linearly proportional to the system bandwidth. This is the main driving force

There is an ever-increasing demand for higher bandwidth and data rate ensuing from exploding number of radio frequency integrated systems and devices. As stated in the Shannon-Hartley theorem, the maximum achievable data rate of a communication channel is linearly proportional to the system bandwidth. This is the main driving force behind pushing wireless systems towards millimeter-wave frequency range, where larger bandwidth is available at a higher carrier frequency. Observing the Moor’s law, highly scaled complementary metal–oxide–semiconductor (CMOS) technologies provide fast transistors with a high unity power gain frequency which enables operating at millimeter-wave frequency range. CMOS is the compelling choice for digital and signal processing modules which concurrently offers high computation speed, low power consumption, and mass integration at a high manufacturing yield. One of the main shortcomings of the sub-micron CMOS technologies is the low breakdown voltage of the transistors that limits the dynamic range of the radio frequency (RF) power blocks, especially with the power amplifiers. Low voltage swing restricts the achievable output power which translates into low signal to noise ratio and degraded linearity. Extensive research has been done on proposing new design and IC fabrication techniques with the goal of generating higher output power in CMOS technology. The prominent drawbacks of these solutions are an increased die area, higher cost per design, and lower overall efficiency due to lossy passive components. In this dissertation, CMOS compatible metal–semiconductor field-effect transistor (MESFETs) are utilized to put forward a new solution to enhance the power amplifier’s breakdown voltage, gain and maximum output power. Requiring no change to the conventional CMOS process flow, this low cost approach allows direct incorporation of high voltage power MESFETs into silicon. High voltage MESFETs were employed in a cascode structure to push the amplifier’s cutoff frequency and unity power gain frequency to the 5G and K-band frequency range. This dissertation begins with CMOS compatible MESFET modeling and fabrication steps, and culminates in the discussion of amplifier design and optimization methodology, parasitic de-embedding steps, simulation and measurement results, and high resistivity RF substrate characterization.
ContributorsHabibiMehr, Payam (Author) / Thornton, Trevor John (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Formicone, Gabriele (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2019