This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 21 - 30 of 66
155464-Thumbnail Image.png
Description
A hybrid molecular dynamics (MD) simulation framework is developed to emulate mechanochemical reaction of mechanophores in epoxy-based nanocomposites. Two different force fields, a classical force field and a bond order based force field are hybridized to mimic the experimental processes from specimen preparation to mechanical loading test. Ultra-violet photodimerization for

A hybrid molecular dynamics (MD) simulation framework is developed to emulate mechanochemical reaction of mechanophores in epoxy-based nanocomposites. Two different force fields, a classical force field and a bond order based force field are hybridized to mimic the experimental processes from specimen preparation to mechanical loading test. Ultra-violet photodimerization for mechanophore synthesis and epoxy curing for thermoset polymer generation are successfully simulated by developing a numerical covalent bond generation method using the classical force field within the framework. Mechanical loading tests to activate mechanophores are also virtually conducted by deforming the volume of a simulation unit cell. The unit cell deformation leads to covalent bond elongation and subsequent bond breakage, which is captured using the bond order based force field. The outcome of the virtual loading test is used for local work analysis, which enables a quantitative study of mechanophore activation. Through the local work analysis, the onset and evolution of mechanophore activation indicating damage initiation and propagation are estimated; ultimately, the mechanophore sensitivity to external stress is evaluated. The virtual loading tests also provide accurate estimations of mechanical properties such as elastic, shear, bulk modulus, yield strain/strength, and Poisson’s ratio of the system. Experimental studies are performed in conjunction with the simulation work to validate the hybrid MD simulation framework. Less than 2% error in estimations of glass transition temperature (Tg) is observed with experimentally measured Tgs by use of differential scanning calorimetry. Virtual loading tests successfully reproduce the stress-strain curve capturing the effect of mechanophore inclusion on mechanical properties of epoxy polymer; comparable changes in Young’s modulus and yield strength are observed in experiments and simulations. Early damage signal detection, which is identified in experiments by observing increased intensity before the yield strain, is captured in simulations by showing that the critical strain representing the onset of the mechanophore activation occurs before the estimated yield strain. It is anticipated that the experimentally validated hybrid MD framework presented in this dissertation will provide a low-cost alternative to additional experiments that are required for optimizing material design parameters to improve damage sensing capability and mechanical properties.

In addition to the study of mechanochemical reaction analysis, an atomistic model of interphase in carbon fiber reinforced composites is developed. Physical entanglement between semi-crystalline carbon fiber surface and polymer matrix is captured by introducing voids in multiple graphene layers, which allow polymer matrix to intertwine with graphene layers. The hybrid MD framework is used with some modifications to estimate interphase properties that include the effect of the physical entanglement. The results are compared with existing carbon fiber surface models that assume that carbon fiber has a crystalline structure and hence are unable to capture the physical entanglement. Results indicate that the current model shows larger stress gradients across the material interphase. These large stress gradients increase the viscoplasticity and damage effects at the interphase. The results are important for improved prediction of the nonlinear response and damage evolution in composite materials.
ContributorsKoo, Bonsung (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Jiao, Yang (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2017
155698-Thumbnail Image.png
Description
A comprehensive and systematic investigation on the diffusion and phase behaviors of nanoparticles and macromolecules in two component liquid-liquid systems via Molecule Dynamic (MD) simulations is presented in this dissertation.

The interface of biphasic liquid systems has attracted great attention because it offers a simple, flexible, and highly reproducible template for

A comprehensive and systematic investigation on the diffusion and phase behaviors of nanoparticles and macromolecules in two component liquid-liquid systems via Molecule Dynamic (MD) simulations is presented in this dissertation.

The interface of biphasic liquid systems has attracted great attention because it offers a simple, flexible, and highly reproducible template for the assembly of a variety of nanoscale objects. However, certain important fundamental issues at the interface have not been fully explored, especially when the size of the object is comparable with the liquid molecules. In the first MD simulation system, the diffusion and self-assembly of nanoparticles with different size, shape and surface composition were studied in an oil/water system. It has been found that a highly symmetrical nanoparticle with uniform surface (e.g. buckyball) can lead to a better-defined solvation shell which makes the “effective radius” of the nanoparticle larger than its own radius, and thus, lead to slower transport (diffusion) of the nanoparticles across the oil-water interface. Poly(N-isopropylacrylamide) (PNIPAM) is a thermoresponsive polymer with a Lower Critical Solution Temperature (LCST) of 32°C in pure water. It is one of the most widely studied stimulus-responsive polymers which can be fabricated into various forms of smart materials. However, current understanding about the diffusive and phase behaviors of PNIPAM in ionic liquids/water system is very limited. Therefore, two biphasic water-ionic liquids (ILs) systems were created to investigate the interfacial behavior of PNIPAM in such unique liquid-liquid interface. It was found the phase preference of PNIPAM below/above its LCST is dependent on the nature of ionic liquids. This potentially allows us to manipulate the interfacial behavior of macromolecules by tuning the properties of ionic liquids and minimizing the need for expensive polymer functionalization. In addition, to seek a more comprehensive understanding of the effects of ionic liquids on the phase behavior of PNIPAM, PNIPAM was studied in two miscible ionic liquids/water systems. The thermodynamic origin causes the reduction of LCST of PNIPAM in imidazolium based ionic liquids/water system was found. Energy analysis, hydrogen boding calculation and detailed structural quantification were presented in this study to support the conclusions.
ContributorsGao, Wei (Author) / Dai, Lenore (Thesis advisor) / Jiao, Yang (Committee member) / Liu, Yongming (Committee member) / Green, Matthew (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2017
155431-Thumbnail Image.png
Description
The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear

The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.
ContributorsTahir, Fraaz (Author) / Liu, Yongming (Thesis advisor) / Jiang, Hanqing (Committee member) / Rajagopalan, Jagannathan (Committee member) / Oswald, Jay (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2017
155189-Thumbnail Image.png
Description
Over the past several years, the density of integrated circuits has been increasing at a very fast rate, following Moore’s law. The advent of three dimensional (3D) packaging technologies enable the increase in density of integrated circuits without necessarily shrinking the dimensions of the device. Under such constraints, the solder

Over the past several years, the density of integrated circuits has been increasing at a very fast rate, following Moore’s law. The advent of three dimensional (3D) packaging technologies enable the increase in density of integrated circuits without necessarily shrinking the dimensions of the device. Under such constraints, the solder volume necessary to join the various layers of the package is also extremely small. At smaller length scales, the local cooling rates are higher, so the microstructures are much finer than that obtained in larger joints (BGA, C4). The fraction of intermetallic compounds (IMCs) present in solder joints in these volumes will be larger. The Cu6Sn5 precipitate size and spacing, and Sn grain structure and crystallography will be different at very small volumes. These factors will most certainly affect the performance of the solder. Examining the mechanical behavior and reliability of Pb-free solders is difficult, primarily because a methodology to characterize the microstructure and the mechanics of deformation at these extremely small length scales has yet to be developed.

In this study, Sn grain orientation and Cu6Sn5 IMC fraction, size, and morphology are characterized in 3D, in pure Sn based solder joints. The obtained results show differences in morphology of Sn grains and IMC precipitates as a function of location within the solder joint indicating influence of local cooling rate differences. Ex situ and in situ electromigration tests done on 250 um and 500 um pure Sn solder joints elucidate the evolution of microstructure, specifically Sn grain growth, IMC segregation and surface degradation. This research implements 3D quantification of microstructural features over micro and nano-scales, thereby enabling a multi-scale / multi-characterization approach.
ContributorsKirubanandham, Antony (Author) / Chawla, Nikhilesh (Thesis advisor) / Jiao, Yang (Committee member) / Lu, Minhua (Committee member) / Rajagopalan, Jagannathan (Committee member) / Arizona State University (Publisher)
Created2016
155276-Thumbnail Image.png
Description
Dealloying, the selective electrochemical dissolution of an active component from an alloy, often results in nanoscale bi-continuous solid/void morphologies. These structures are attracting attention for a wide range of applications including catalysis, sensing and actuation. The evolution of these nanoporous structures has been widely studied for the case at low

Dealloying, the selective electrochemical dissolution of an active component from an alloy, often results in nanoscale bi-continuous solid/void morphologies. These structures are attracting attention for a wide range of applications including catalysis, sensing and actuation. The evolution of these nanoporous structures has been widely studied for the case at low homologous temperature, TH, such as in Ag-Au, Cu-Au, Cu-Pt, etc. Since at low TH the solid-state mobility of the components is of order 10-30 cm2s-1 or less, percolation dissolution is the only mechanism available to support dealloying over technologically relevant time scales. Without the necessity of solid-state mass transport, percolation dissolution involves sharp transitions based on two key features, the parting limit and critical potential.

Dealloying under conditions of high TH, (or high intrinsic diffusivity of the more electrochemically reactive component) is considerably more complicated than at low TH. Since solid-state mass transport is available to support this process, a rich set of morphologies, including negative or void dendrites, Kirkendall voids and bi-continuous porous structures, can evolve. In order to study dealloying at high TH we have examined the behavior of Li-Sn and Li-Pb alloys. The intrinsic diffusivities of Li were measured in these alloys using electrochemical titration and time of flight measurements. Morphology evolution was studied with varying alloy composition, host dimension and imposed electrochemical conditions. Owing to diffusive transport, there is no parting limit for dealloying, however, there is a compositional threshold (pPD) as well as a critical potential for the operation of percolation dissolution and the formation of bi-continuous structures. Negative or void dendrite morphologies evolve at compositions below pPD and at large values of the applied electrochemical potential when the rate of dealloying is limited by solid-state mass transport. This process is isomorphic to dendrite formation in electrodeposition. Kirkendall voiding morphologies evolve below the critical potential over the entire range of alloy compositions.

We summarize our results by introducing dealloying morphology diagrams that we use to graphically illustrate the electrochemical conditions resulting in various morphologies that can form under conditions of low and high TH.
ContributorsGeng, Ke (Author) / Sieradzki, Karl (Thesis advisor) / Crozier, Peter (Committee member) / Chan, Candace (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2017
147599-Thumbnail Image.png
Description

The scope of this project is a combination of material science engineering and mechanical engineering. Overall, the main goal of this project is to develop a lightweight concrete that maintains its original strength profile. Initial research has shown that a plastic-concrete composite could create a more lightweight concrete than that

The scope of this project is a combination of material science engineering and mechanical engineering. Overall, the main goal of this project is to develop a lightweight concrete that maintains its original strength profile. Initial research has shown that a plastic-concrete composite could create a more lightweight concrete than that made using the typical gravel aggregate for concrete, while still maintaining the physical strength that concrete is known for. This will be accomplished by varying the amount of plastic in the aggregate. If successful, this project would allow concrete to be used in applications it would typically not be suitable for.<br/>After testing the strength of the concrete specimens with varying fills of plastic aggregate it was determined that the control group experienced an average peak stress of 2089 psi, the 16.67% plastic group experienced an average peak stress of 2649 psi, the 33.3% plastic group experienced an average peak stress of 1852 psi, and the 50% plastic group experienced an average stress of 924.5 psi. The average time to reach the peak stress was found to be 12 minutes and 24 seconds in the control group, 15 minutes and 34 seconds in the 16.7% plastic group, 9 minutes and 45 seconds in the 33.3% plastic group, and 10 minutes and 58 seconds in the 50% plastic group. Taking the average of the normalized weights of the cylindrical samples it was determined that the control group weighed 14.773 oz/in, the 16.7% plastic group weighed 15 oz/in, the 33.3% plastic group weighed 14.573 oz/in, and the 50% plastic group weighed 12.959 oz/in. Based on these results it can be concluded that a small addition of plastic aggregate can be beneficial in creating a lighter, stronger concrete. The results show that a 16.7% fill ratio of plastic to rock aggregate can increase the failure time and the peak strength of a composite concrete. Overall, the experiment was successful in analyzing the effects of recycled plastic aggregate in composite concrete. <br/>Some possible future studies related to this subject material are adding aluminum to the concrete, having better molds, looking for the right consistency in each mixture, mixing for each mold individually, and performing other tests on the samples.

ContributorsClegg, Lauren Taylor (Co-author) / Benning, Taylor (Co-author) / Nian, Qiong (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147600-Thumbnail Image.png
Description

The scope of this project is a combination of material science engineering and<br/>mechanical engineering. Overall, the main goal of this project is to develop a lightweight<br/>concrete that maintains its original strength profile. Initial research has shown that a<br/>plastic-concrete composite could create a more lightweight concrete than that made using the<br/>typical

The scope of this project is a combination of material science engineering and<br/>mechanical engineering. Overall, the main goal of this project is to develop a lightweight<br/>concrete that maintains its original strength profile. Initial research has shown that a<br/>plastic-concrete composite could create a more lightweight concrete than that made using the<br/>typical gravel aggregate for concrete, while still maintaining the physical strength that concrete is<br/>known for. This will be accomplished by varying the amount of plastic in the aggregate. If<br/>successful, this project would allow concrete to be used in applications it would typically not be<br/>suitable for.<br/>After testing the strength of the concrete specimens with varying fills of plastic aggregate<br/>it was determined that the control group experienced an average peak stress of 2089 psi, the<br/>16.67% plastic group experienced an average peak stress of 2649 psi, the 33.3% plastic group<br/>experienced an average peak stress of 1852 psi, and the 50% plastic group experienced an<br/>average stress of 924.5 psi. The average time to reach the peak stress was found to be 12 minutes<br/>and 24 seconds in the control group, 15 minutes and 34 seconds in the 16.7% plastic group, 9<br/>minutes and 45 seconds in the 33.3% plastic group, and 10 minutes and 58 seconds in the 50%<br/>plastic group. Taking the average of the normalized weights of the cylindrical samples it was<br/>determined that the control group weighed 14.773 oz/in, the 16.7% plastic group weighed 15<br/>oz/in, the 33.3% plastic group weighed 14.573 oz/in, and the 50% plastic group weighed 12.959<br/>oz/in. Based on these results it can be concluded that a small addition of plastic aggregate can be<br/>beneficial in creating a lighter, stronger concrete. The results show that a 16.7% fill ratio of<br/>plastic to rock aggregate can increase the failure time and the peak strength of a composite<br/>concrete. Overall, the experiment was successful in analyzing the effects of recycled plastic<br/>aggregate in composite concrete.<br/>Some possible future studies related to this subject material are adding aluminum to the<br/>concrete, having better molds, looking for the right consistency in each mixture, mixing for each<br/>mold individually, and performing other tests on the samples.

ContributorsBenning, Taylor Ann (Co-author) / Clegg, Lauren (Co-author) / Nian, Qiong (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This paper presents a comprehensive review of current advances and challenges in the field of bone tissue engineering. A systematic review of the literature was conducted to identify recent developments in biomaterials, scaffold design, cell sources, and growth factors for bone tissue engineering applications. Based on this review, an experimental

This paper presents a comprehensive review of current advances and challenges in the field of bone tissue engineering. A systematic review of the literature was conducted to identify recent developments in biomaterials, scaffold design, cell sources, and growth factors for bone tissue engineering applications. Based on this review, an experimental proposal is presented for the development of porous composite biomaterials that may enhance bone regeneration, which consist of hybrid amyloid/spidroin fibers combined with a bioactive ceramic matrix. An iterative design process of modeling and simulation, production, and characterization of both the fibers and the composite material is proposed. A modeling and simulation approach is also presented for unidirectional fiber composite biomaterials using 2-point correlation functions, finite element simulations, and machine learning. This approach was demonstrated to enable the efficient and accurate prediction of the effective Young’s modulus of candidate composite biomaterials, which can inform the design of optimized materials for bone tissue engineering applications. The proposed experimental and simulation approaches have the potential to address current challenges and lead to the development of novel composite biomaterials that can augment the current technologies in the field of bone tissue engineering.

ContributorsThornton, Bryce (Author) / Hartwell, Leland (Thesis director) / Jiao, Yang (Committee member) / Susarla, Sandhya (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
168458-Thumbnail Image.png
Description
Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst

Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst devices, magnetic shielding, etc. For the engineering of the cellular foam architectures, closed-form models that can be used to predict the mechanical and thermal properties of foams are highly desired especially for the recently developed ultralight weight shellular architectures. Herein, for the first time, a novel packing three-dimensional (3D) hollow pentagonal dodecahedron (HPD) model is proposed to simulate the cellular architecture with hollow struts. An electrochemical deposition process is utilized to manufacture the metallic hollow foam architecture. Mechanical and thermal testing of the as-manufactured foams are carried out to compare with the HPD model. Timoshenko beam theory is utilized to verify and explain the derived power coefficient relation. Our HPD model is proved to accurately capture both the topology and the physical properties of hollow stochastic foam. Understanding how the novel HPD model packing helps break the conventional impression that 3D pentagonal topology cannot fulfill the space as a representative volume element. Moreover, the developed HPD model can predict the mechanical and thermal properties of the manufactured hollow metallic foams and elucidating of how the inevitable manufacturing defects affect the physical properties of the hollow metallic foams. Despite of the macro-scale stochastic foam architecture, nano gradient gyroid lattices are studied using Molecular Dynamics (MD) simulation. The simulation result reveals that, unlike homogeneous architecture, gradient gyroid not only shows novel layer-by-layer deformation behavior, but also processes significantly better energy absorption ability. The deformation behavior and energy absorption are predictable and designable, which demonstrate its highly programmable potential.
ContributorsDai, Rui (Author) / Nian, Qiong (Thesis advisor) / Jiao, Yang (Committee member) / Kwon, Beomjin (Committee member) / Liu, Yongming (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2021
168355-Thumbnail Image.png
Description
Ultra-fast 2D/3D material microstructure reconstruction and quantitative structure-property mapping are crucial components of integrated computational material engineering (ICME). It is particularly challenging for modeling random heterogeneous materials such as alloys, composites, polymers, porous media, and granular matters, which exhibit strong randomness and variations of their material properties due to

Ultra-fast 2D/3D material microstructure reconstruction and quantitative structure-property mapping are crucial components of integrated computational material engineering (ICME). It is particularly challenging for modeling random heterogeneous materials such as alloys, composites, polymers, porous media, and granular matters, which exhibit strong randomness and variations of their material properties due to the hierarchical uncertainties associated with their complex microstructure at different length scales. Such uncertainties also exist in disordered hyperuniform systems that are statistically isotropic and possess no Bragg peaks like liquids and glasses, yet they suppress large-scale density fluctuations in a similar manner as in perfect crystals. The unique hyperuniform long-range order in these systems endow them with nearly optimal transport, electronic and mechanical properties. The concept of hyperuniformity was originally introduced for many-particle systems and has subsequently been generalized to heterogeneous materials such as porous media, composites, polymers, and biological tissues for unconventional property discovery. An explicit mixture random field (MRF) model is proposed to characterize and reconstruct multi-phase stochastic material property and microstructure simultaneously, where no additional tuning step nor iteration is needed compared with other stochastic optimization approaches such as the simulated annealing. The proposed method is shown to have ultra-high computational efficiency and only requires minimal imaging and property input data. Considering microscale uncertainties, the material reliability will face the challenge of high dimensionality. To deal with the so-called “curse of dimensionality”, efficient material reliability analysis methods are developed. Then, the explicit hierarchical uncertainty quantification model and efficient material reliability solvers are applied to reliability-based topology optimization to pursue the lightweight under reliability constraint defined based on structural mechanical responses. Efficient and accurate methods for high-resolution microstructure and hyperuniform microstructure reconstruction, high-dimensional material reliability analysis, and reliability-based topology optimization are developed. The proposed framework can be readily incorporated into ICME for probabilistic analysis, discovery of novel disordered hyperuniform materials, material design and optimization.
ContributorsGao, Yi (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Ren, Yi (Committee member) / Pan, Rong (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2021