This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 7 of 7
Filtering by

Clear all filters

156115-Thumbnail Image.png
Description
Materials with unprecedented properties are necessary to make dramatic changes in current and future aerospace platforms. Hybrid materials and composites are increasingly being used in aircraft and spacecraft frames; however, future platforms will require an optimal design of novel materials that enable operation in a variety of environments and produce

Materials with unprecedented properties are necessary to make dramatic changes in current and future aerospace platforms. Hybrid materials and composites are increasingly being used in aircraft and spacecraft frames; however, future platforms will require an optimal design of novel materials that enable operation in a variety of environments and produce known/predicted damage mechanisms. Nanocomposites and nanoengineered composites with CNTs have the potential to make significant improvements in strength, stiffness, fracture toughness, flame retardancy and resistance to corrosion. Therefore, these materials have generated tremendous scientific and technical interest over the past decade and various architectures are being explored for applications to light-weight airframe structures. However, the success of such materials with significantly improved performance metrics requires careful control of the parameters during synthesis and processing. Their implementation is also limited due to the lack of complete understanding of the effects the nanoparticles impart to the bulk properties of composites. It is common for computational methods to be applied to explain phenomena measured or observed experimentally. Frequently, a given phenomenon or material property is only considered to be fully understood when the associated physics has been identified through accompanying calculations or simulations.

The computationally and experimentally integrated research presented in this dissertation provides improved understanding of the mechanical behavior and response including damage and failure in CNT nanocomposites, enhancing confidence in their applications. The computations at the atomistic level helps to understand the underlying mechanochemistry and allow a systematic investigation of the complex CNT architectures and the material performance across a wide range of parameters. Simulation of the bond breakage phenomena and development of the interface to continuum scale damage captures the effects of applied loading and damage precursor and provides insight into the safety of nanoengineered composites under service loads. The validated modeling methodology is expected to be a step in the direction of computationally-assisted design and certification of novel materials, thus liberating the pace of their implementation in future applications.
ContributorsSubramanian, Nithya (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiao, Yang (Committee member) / Liu, Yongming (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2018
155464-Thumbnail Image.png
Description
A hybrid molecular dynamics (MD) simulation framework is developed to emulate mechanochemical reaction of mechanophores in epoxy-based nanocomposites. Two different force fields, a classical force field and a bond order based force field are hybridized to mimic the experimental processes from specimen preparation to mechanical loading test. Ultra-violet photodimerization for

A hybrid molecular dynamics (MD) simulation framework is developed to emulate mechanochemical reaction of mechanophores in epoxy-based nanocomposites. Two different force fields, a classical force field and a bond order based force field are hybridized to mimic the experimental processes from specimen preparation to mechanical loading test. Ultra-violet photodimerization for mechanophore synthesis and epoxy curing for thermoset polymer generation are successfully simulated by developing a numerical covalent bond generation method using the classical force field within the framework. Mechanical loading tests to activate mechanophores are also virtually conducted by deforming the volume of a simulation unit cell. The unit cell deformation leads to covalent bond elongation and subsequent bond breakage, which is captured using the bond order based force field. The outcome of the virtual loading test is used for local work analysis, which enables a quantitative study of mechanophore activation. Through the local work analysis, the onset and evolution of mechanophore activation indicating damage initiation and propagation are estimated; ultimately, the mechanophore sensitivity to external stress is evaluated. The virtual loading tests also provide accurate estimations of mechanical properties such as elastic, shear, bulk modulus, yield strain/strength, and Poisson’s ratio of the system. Experimental studies are performed in conjunction with the simulation work to validate the hybrid MD simulation framework. Less than 2% error in estimations of glass transition temperature (Tg) is observed with experimentally measured Tgs by use of differential scanning calorimetry. Virtual loading tests successfully reproduce the stress-strain curve capturing the effect of mechanophore inclusion on mechanical properties of epoxy polymer; comparable changes in Young’s modulus and yield strength are observed in experiments and simulations. Early damage signal detection, which is identified in experiments by observing increased intensity before the yield strain, is captured in simulations by showing that the critical strain representing the onset of the mechanophore activation occurs before the estimated yield strain. It is anticipated that the experimentally validated hybrid MD framework presented in this dissertation will provide a low-cost alternative to additional experiments that are required for optimizing material design parameters to improve damage sensing capability and mechanical properties.

In addition to the study of mechanochemical reaction analysis, an atomistic model of interphase in carbon fiber reinforced composites is developed. Physical entanglement between semi-crystalline carbon fiber surface and polymer matrix is captured by introducing voids in multiple graphene layers, which allow polymer matrix to intertwine with graphene layers. The hybrid MD framework is used with some modifications to estimate interphase properties that include the effect of the physical entanglement. The results are compared with existing carbon fiber surface models that assume that carbon fiber has a crystalline structure and hence are unable to capture the physical entanglement. Results indicate that the current model shows larger stress gradients across the material interphase. These large stress gradients increase the viscoplasticity and damage effects at the interphase. The results are important for improved prediction of the nonlinear response and damage evolution in composite materials.
ContributorsKoo, Bonsung (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Jiao, Yang (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2017
171814-Thumbnail Image.png
Description
Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials

Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials under service conditions. This dissertation provides fundamental investigations of several advanced materials: thermoset polymers, a common matrix material for fiber-reinforced composites and nanocomposites; aluminum alloy 7075-T6 (AA7075-T6), a high-performance aerospace material; and ceramic matrix composites (CMCs), an advanced composite for extreme-temperature applications. To understand matrix interactions with various interfaces and nanoinclusions at their fundamental scale, the properties of thermoset polymers are studied at the atomistic scale. An improved proximity-based molecular dynamics (MD) technique for modeling the crosslinking of thermoset polymers is carefully established, enabling realistic curing simulations through its ability to dynamically and probabilistically perform complex topology transformations. The proximity-based MD curing methodology is then used to explore damage initiation and the local anisotropic evolution of mechanical properties in thermoset polymers under uniaxial tension with an emphasis on changes in stiffness through a series of tensile loading, unloading, and reloading experiments. Aluminum alloys in aerospace applications often require a fatigue life of over 109 cycles, which is well over the number of cycles that can be practically tested using conventional fatigue testing equipment. In order to study these high-life regimes, a detailed ultrasonic cycle fatigue study is presented for AA7075-T6 under fully reversed tension-compression loading. The geometric sensitivity, frequency effects, size effects, surface roughness effects, and the corresponding failure mechanisms for ultrasonic fatigue across different fatigue regimes are investigated. Finally, because CMCs are utilized in extreme environments, oxidation plays an important role in their degradation. A multiphysics modeling methodology is thus developed to address the complex coupling between oxidation, mechanical stress, and oxygen diffusion in heterogeneous carbon fiber-reinforced CMC microstructures.
ContributorsSchichtel, Jacob (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Ghoshal, Anindya (Committee member) / Huang, Huei-Ping (Committee member) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022
161310-Thumbnail Image.png
Description
Engineering materials and structures undergo a wide variety of multiaxial fatigue loading conditions during their service life. Some of the most complex multiaxial loading scenarios include proportional/non-proportional loading, mix-mode loading, overload/underload, etc. Such loadings are often experienced in many critical applications including aircraft, rotorcraft, and wind turbines. Any accidental failure

Engineering materials and structures undergo a wide variety of multiaxial fatigue loading conditions during their service life. Some of the most complex multiaxial loading scenarios include proportional/non-proportional loading, mix-mode loading, overload/underload, etc. Such loadings are often experienced in many critical applications including aircraft, rotorcraft, and wind turbines. Any accidental failure of these structures during their service life can lead to catastrophic damage to life, property, and environment. All fatigue failure begins with the nucleation of a small crack, followed by crack growth, and ultimately the occurrence of final failure; however, the mechanisms governing the crack nucleation and the crack propagation behavior depend on the nature of fatigue loading and microstructure of the material. In general, ductile materials witness multiple nucleation sites leading to its failure; however, high strength material fails from the nucleation of a single dominant crack. Crack propagation, on the other hand, is governed by various competing mechanisms, which can act either ahead of the crack tip or in the wake region of the crack. Depending upon the magnitude of load, overload/underload, mode-mixity, and microstructure, dominant governing mechanisms may include: crack tip blunting; crack deflection, branching and secondary cracking; strain hardening; residual compressive stresses; plasticity-induced closure, etc. Therefore, it is essential to investigate the mechanisms governing fatigue failure of structural components under such complex multiaxial loading conditions in order to provide a reliable estimation of useful life. The research presented in this dissertation provides the foundation for a comprehensive understanding of fatigue damage in AA 7075 subjected to a range of loading conditions. A series of fatigue tests were conducted on specially designed specimens under different forms of multiaxial loading, which was followed by fracture-surface analysis in order to identify the governing micromechanisms and correlate them with macroscopic fatigue damage behavior. An empirical model was also developed to predict the crack growth rate trend under mode II overloads in an otherwise constant amplitude biaxial loading. The model parameters were calculated using the shape and the size of the plastic zone ahead of the crack tip, and the degree of material hardening within the overload plastic zone. The data obtained from the model showed a good correlation with the experimental values for crack growth rate in the transient region.
ContributorsSingh, Abhay Kumar (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Fard, Masoud Y (Committee member) / Arizona State University (Publisher)
Created2021
161786-Thumbnail Image.png
Description
Fiber reinforced composites are rapidly replacing conventional metallic or polymeric materials as materials of choice in a myriad of applications across a wide range of industries. The relatively low weight, high strength, high stiffness, and a variety of thermal and mechanical environmental and loading capabilities are in part what make

Fiber reinforced composites are rapidly replacing conventional metallic or polymeric materials as materials of choice in a myriad of applications across a wide range of industries. The relatively low weight, high strength, high stiffness, and a variety of thermal and mechanical environmental and loading capabilities are in part what make composite materials so appealing to material experts and design engineers. Additionally, fiber reinforced composites are highly tailorable and customized composite materials and structures can be readily designed for specific applications including those requiring particular directional material properties, fatigue resistance, damage tolerance, high temperature capabilities, or resistance to environmental degradation due to humidity and oxidation. The desirable properties of fiber reinforced composites arise from the strategic combination of multiple constituents to form a new composite material. However, the significant material anisotropy that occurs as a result of combining multiple constituents, each with different directional thermal and mechanical properties, complicates material analysis and remains a major impediment to fully understanding composite deformation and damage behavior. As a result, composite materials, especially specialized composites such as ceramic matrix composites and various multifunctional composites, are not utilized to their fullest potential. In the research presented in this dissertation, the deformation and damage behavior of several fiber reinforced composite systems were investigated. The damage accumulation and propagation behavior of carbon fiber reinforced polymer (CFRP) composites under complex in-phase biaxial fatigue loading conditions was investigated and the early stage damage and microscale damage were correlated to the eventual fatigue failure behavior and macroscale damage mechanisms. The temperature-dependent deformation and damage response of woven ceramic matrix composites (CMCs) reinforced with carbon and silicon carbide fibers was also studied. A fracture mechanics-informed continuum damage model was developed to capture the brittle damage behavior of the ceramic matrix. A multiscale thermomechanical simulation framework, consisting of cooldown simulations to capture a realistic material initial state and subsequent mechanical loading simulations to capture the temperature-dependent nonlinear stress-strain behavior, was also developed. The methodologies and results presented in this research represent substantial progress toward increasing understanding of the deformation and damage behavior of some key fiber reinforced composite materials.
ContributorsSkinner, Travis Dale (Author) / Chattopadhyay, Aditi (Thesis advisor) / Hall, Asha (Committee member) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Yekani-Fard, Masoud (Committee member) / Arizona State University (Publisher)
Created2021
161637-Thumbnail Image.png
Description
Extensive efforts have been devoted to understanding material failure in the last several decades. A suitable numerical method and specific failure criteria are required for failure simulation. The finite element method (FEM) is the most widely used approach for material mechanical modelling. Since FEM is based on partial differential equations,

Extensive efforts have been devoted to understanding material failure in the last several decades. A suitable numerical method and specific failure criteria are required for failure simulation. The finite element method (FEM) is the most widely used approach for material mechanical modelling. Since FEM is based on partial differential equations, it is hard to solve problems involving spatial discontinuities, such as fracture and material interface. Due to their intrinsic characteristics of integro-differential governing equations, discontinuous approaches are more suitable for problems involving spatial discontinuities, such as lattice spring method, discrete element method, and peridynamics. A recently proposed lattice particle method is shown to have no restriction of Poisson’s ratio, which is very common in discontinuous methods. In this study, the lattice particle method is adopted to study failure problems. In addition of numerical method, failure criterion is essential for failure simulations. In this study, multiaxial fatigue failure is investigated and then applied to the adopted method. Another critical issue of failure simulation is that the simulation process is time-consuming. To reduce computational cost, the lattice particle method can be partly replaced by neural network model.First, the development of a nonlocal maximum distortion energy criterion in the framework of a Lattice Particle Model (LPM) is presented for modeling of elastoplastic materials. The basic idea is to decompose the energy of a discrete material point into dilatational and distortional components, and plastic yielding of bonds associated with this material point is assumed to occur only when the distortional component reaches a critical value. Then, two multiaxial fatigue models are proposed for random loading and biaxial tension-tension loading, respectively. Following this, fatigue cracking in homogeneous and composite materials is studied using the lattice particle method and the proposed multiaxial fatigue model. Bi-phase material fatigue crack simulation is performed. Next, an integration of an efficient deep learning model and the lattice particle method is presented to predict fracture pattern for arbitrary microstructure and loading conditions. With this integration, computational accuracy and efficiency are both considered. Finally, some conclusion and discussion based on this study are drawn.
ContributorsWei, Haoyang (Author) / Liu, Yongming (Thesis advisor) / Chattopadhyay, Aditi (Committee member) / Jiang, Hanqing (Committee member) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2021
161986-Thumbnail Image.png
Description
Damage and failure of advanced composite materials and structures are often manifestations of nonlinear deformation that involve multiple mechanisms and their interactions at the constituent length scale. The presence and interactions of inelastic microscale constituents strongly influence the macroscopic damage anisotropy and useful residual life. The mechano-chemical interactions between constituents

Damage and failure of advanced composite materials and structures are often manifestations of nonlinear deformation that involve multiple mechanisms and their interactions at the constituent length scale. The presence and interactions of inelastic microscale constituents strongly influence the macroscopic damage anisotropy and useful residual life. The mechano-chemical interactions between constituents at the atomistic length scale play a more critical role with nanoengineered composites. Therefore, it is desirable to link composite behavior to specific microscopic constituent properties explicitly and lower length scale features using high-fidelity multiscale modeling techniques.In the research presented in this dissertation, an atomistically-informed multiscale modeling framework is developed to investigate damage evolution and failure in composites with radially-grown carbon nanotube (CNT) architecture. A continuum damage mechanics (CDM) model for the radially-grown CNT interphase region is developed with evolution equations derived using atomistic simulations. The developed model is integrated within a high-fidelity generalized method of cells (HFGMC) micromechanics theory and is used to parametrically investigate the influence of various input micro and nanoscale parameters on the mechanical properties, such as elastic stiffness, strength, and toughness. In addition, the inter-fiber stresses and the onset of damage in the presence of the interphase region are investigated to better understand the energy dissipation mechanisms that attribute to the enhancement in the macroscopic out-of-plane strength and toughness. Note that the HFGMC theory relies heavily on the description of microscale features and requires many internal variables, leading to high computational costs. Therefore, a novel reduced-order model (ROM) is also developed to surrogate full-field nonlinear HFGMC simulations and decrease the computational time and memory requirements of concurrent multiscale simulations significantly. The accurate prediction of composite sandwich materials' thermal stability and durability remains a challenge due to the variability of thermal-related material coefficients at different temperatures and the extensive use of bonded fittings. Consequently, the dissertation also investigates the thermomechanical performance of a complex composite sandwich space structure subject to thermal cycling. Computational finite element (FE) simulations are used to investigate the intrinsic failure mechanisms and damage precursors in honeycomb core composite sandwich structures with adhesively bonded fittings.
ContributorsVenkatesan, Karthik Rajan (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Yekani Fard, Masoud (Committee member) / Stoumbos, Tom (Committee member) / Arizona State University (Publisher)
Created2021