This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

133622-Thumbnail Image.png
Description
The focus of this study was to address the problem of prohibitively expensive LiDARs currently being used in autonomous vehicles by analyzing the capabilities and shortcomings of affordable LiDARs as replacements. This involved the characterization of affordable LiDARs that are currently available on the market. The characterization of the LiDARs

The focus of this study was to address the problem of prohibitively expensive LiDARs currently being used in autonomous vehicles by analyzing the capabilities and shortcomings of affordable LiDARs as replacements. This involved the characterization of affordable LiDARs that are currently available on the market. The characterization of the LiDARs involved testing refresh rates, field of view, distance the sensors could detect, reflectivity, and power of the emitters. The four LiDARs examined in this study were the Scanse, RPLIDAR A2, LeddarTech Vu8, and LeddarTech M16. Of these low cost LiDAR options we find the two best options for use in affordable autonomous vehicle sensors to be the RPLIDAR A2 and the LeddarTech M16.
ContributorsMurphy, Thomas Joseph (Co-author) / Gamal, Eltohamy (Co-author) / Yu, Hongbin (Thesis director) / Houghton, Todd (Committee member) / Electrical Engineering Program (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132034-Thumbnail Image.png
Description
This paper will primarily deal with obstacle detection and the benefits that radar technology provides as the primary interface. The concept that is being proposed involves using a non-industrialized radar to achieve similar results when trying to detect a present object. By being able to achieve a working radar detection

This paper will primarily deal with obstacle detection and the benefits that radar technology provides as the primary interface. The concept that is being proposed involves using a non-industrialized radar to achieve similar results when trying to detect a present object. By being able to achieve a working radar detection system at a more general domain, the path to it becoming more universal accessible increases. This, in turn, will hopefully amplify the areas in which radar technology can be applied to and lead to great benefits universally. From the compiled data and the work that has been done to achieve a responsive radar, it is noted that the radar will provide an accurate reading in most conditions that it is introduced to. These conditions vary from range resolution aspects to various weather environments, as well as the visibility aspect. However, based on the results that were achieved, through various testing, there are still some areas in which radar technology needs to improve in, for it to be fully considered as the sole interface when it comes to obstacle detection and its integration into future technology like self-driving cars. Nevertheless, the capabilities of radar technology at this caliber is noted to be quite impressive and similar to other more expansive options that are available.
ContributorsMartinez, Johan (Author) / Yu, Hongbin (Thesis director) / Houghton, Todd (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-12