This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 91
152197-Thumbnail Image.png
Description
Microelectronic industry is continuously moving in a trend requiring smaller and smaller devices and reduced form factors with time, resulting in new challenges. Reduction in device and interconnect solder bump sizes has led to increased current density in these small solders. Higher level of electromigration occurring due to increased current

Microelectronic industry is continuously moving in a trend requiring smaller and smaller devices and reduced form factors with time, resulting in new challenges. Reduction in device and interconnect solder bump sizes has led to increased current density in these small solders. Higher level of electromigration occurring due to increased current density is of great concern affecting the reliability of the entire microelectronics systems. This paper reviews electromigration in Pb- free solders, focusing specifically on Sn0.7wt.% Cu solder joints. Effect of texture, grain orientation, and grain-boundary misorientation angle on electromigration and intermetallic compound (IMC) formation is studied through EBSD analysis performed on actual C4 bumps.
ContributorsLara, Leticia (Author) / Tasooji, Amaneh (Thesis advisor) / Lee, Kyuoh (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
152042-Thumbnail Image.png
Description
Rapid processing and reduced end-of-range diffusion effects demonstrate that susceptor-assisted microwave annealing is an efficient processing alternative for electrically activating dopants and removing ion-implantation damage in ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Raman spectroscopy and ion channeling analysis monitor the extent of ion implantation

Rapid processing and reduced end-of-range diffusion effects demonstrate that susceptor-assisted microwave annealing is an efficient processing alternative for electrically activating dopants and removing ion-implantation damage in ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Raman spectroscopy and ion channeling analysis monitor the extent of ion implantation damage and recrystallization. The presence of damage and defects in ion implanted silicon, and the reduction of the defects as a result of annealing, is observed by Rutherford backscattering spectrometry, moreover, the boron implanted silicon is further investigated by cross-section transmission electron microscopy. When annealing B+ implanted silicon, the dissolution of small extended defects and growth of large extended defects result in reduced crystalline quality that hinders the electrical activation process. Compared to B+ implanted silicon, phosphorus implanted samples experience more effective activation and achieve better crystalline quality. Comparison of end-of-range dopants diffusion resulting from microwave annealing and rapid thermal annealing (RTA) is done using secondary ion mass spectroscopy. Results from microwave annealed P+ implanted samples show that almost no diffusion occurs during time periods required for complete dopant activation and silicon recrystallization. The relative contributions to heating of the sample, by a SiC susceptor, and by Si self-heating in the microwave anneal, were also investigated. At first 20s, the main contributor to the sample's temperature rise is Si self-heating by microwave absorption.
ContributorsZhao, Zhao (Author) / Alford, Terry Lynn (Thesis advisor) / Theodore, David (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
152045-Thumbnail Image.png
Description
This thesis work mainly examined the stability and reliability issues of amorphous Indium Gallium Zinc Oxide (a-IGZO) thin film transistors under bias-illumination stress. Amorphous hydrogenated silicon has been the dominating material used in thin film transistors as a channel layer. However with the advent of modern high performance display technologies,

This thesis work mainly examined the stability and reliability issues of amorphous Indium Gallium Zinc Oxide (a-IGZO) thin film transistors under bias-illumination stress. Amorphous hydrogenated silicon has been the dominating material used in thin film transistors as a channel layer. However with the advent of modern high performance display technologies, it is required to have devices with better current carrying capability and better reproducibility. This brings the idea of new material for channel layer of these devices. Researchers have tried poly silicon materials, organic materials and amorphous mixed oxide materials as a replacement to conventional amorphous silicon layer. Due to its low price and easy manufacturing process, amorphous mixed oxide thin film transistors have become a viable option to replace the conventional ones in order to achieve high performance display circuits. But with new materials emerging, comes the challenge of reliability and stability issues associated with it. Performance measurement under bias stress and bias-illumination stress have been reported previously. This work proposes novel post processing low temperature long time annealing in optimum ambient in order to annihilate or reduce the defects and vacancies associated with amorphous material which lead to the instability or even the failure of the devices. Thin film transistors of a-IGZO has been tested for standalone illumination stress and bias-illumination stress before and after annealing. HP 4155B semiconductor parameter analyzer has been used to stress the devices and measure the output characteristics and transfer characteristics of the devices. Extra attention has been given about the effect of forming gas annealing on a-IGZO thin film. a-IGZO thin film deposited on silicon substrate has been tested for resistivity, mobility and carrier concentration before and after annealing in various ambient. Elastic Recoil Detection has been performed on the films to measure the amount of hydrogen atoms present in the film. Moreover, the circuit parameters of the thin film transistors has been extracted to verify the physical phenomenon responsible for the instability and failure of the devices. Parameters like channel resistance, carrier mobility, power factor has been extracted and variation of these parameters has been observed before and after the stress.
ContributorsRuhul Hasin, Muhammad (Author) / Alford, Terry L. (Thesis advisor) / Krause, Stephen (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
151785-Thumbnail Image.png
Description
This dissertation explores the role of smart home service provisions (SHSP) as motivational agents supporting goal attainment and human flourishing. Evoking human flourishing as a lens for interaction encapsulates issues of wellbeing, adaptation and problem solving within the context of social interaction. To investigate this line of research a new,

This dissertation explores the role of smart home service provisions (SHSP) as motivational agents supporting goal attainment and human flourishing. Evoking human flourishing as a lens for interaction encapsulates issues of wellbeing, adaptation and problem solving within the context of social interaction. To investigate this line of research a new, motivation-sensitive approach to design was implemented. This approach combined psychometric analysis from motivational psychology's Personal Project Analysis (PPA) and Place Attachment theory's Sense of Place (SoP) analysis to produce project-centered motivational models for environmental congruence. Regression analysis of surveys collected from 150 (n = 150) young adults about their homes revealed PPA motivational dimensions had significant main affects on all three SoP factors. Model one indicated PPA dimensions Fearful and Value Congruency predicted the SoP factor Place Attachment (p = 0.012). Model two indicated the PPA factor Positive Affect and PPA dimensions Value Congruency, Self Identity and Autonomy predicted Place Identity (p = .0003). Model three indicated PPA dimensions Difficulty and Likelihood of Success predicted the SoP factor Place Dependency. The relationships between motivational PPA dimensions and SoP demonstrated in these models informed creation of a set of motivational design heuristics. These heuristics guided 20 participants (n = 20) through co-design of paper prototypes of SHSPs supporting goal attainment and human flourishing. Normative analysis of these paper prototypes fashioned a design framework consisting of the use cases "make with me", "keep me on task" and "improve myself"; the four design principles "time and timing", "guidance and accountability", "project ambiguity" and "positivity mechanisms"; and the seven interaction models "structuring time", "prompt user", "gather resources", "consume content", "create content", "restrict and/or restore access to content" and "share content". This design framework described and evaluated three technology probes installed in the homes of three participants (n = 3) for field-testing over the course of one week. A priori and post priori samples of psychometric measures were inconclusive in determining if SHSP motivated goal attainment or increased environmental congruency between young adults and their homes.
ContributorsBrotman, Ryan Scott (Author) / Burleson, Winsow (Thesis advisor) / Heywood, William (Committee member) / Forlizzi, Jodi (Committee member) / Arizona State University (Publisher)
Created2013
151348-Thumbnail Image.png
Description
III-Nitride nanostructures have been an active area of research recently due to their ability to tune their optoelectronic properties. Thus far work has been done on InGaN quantum dots, nanowires, nanopillars, amongst other structures, but this research reports the creation of a new type of InGaN nanostructure, nanorings. Hexagonal InGaN

III-Nitride nanostructures have been an active area of research recently due to their ability to tune their optoelectronic properties. Thus far work has been done on InGaN quantum dots, nanowires, nanopillars, amongst other structures, but this research reports the creation of a new type of InGaN nanostructure, nanorings. Hexagonal InGaN nanorings were formed using Metal Organic Chemical Vapor Deposition through droplet epitaxy. The nanorings were thoroughly analyzed using x-ray diffraction, photoluminescence, electron microscopy, electron diffraction, and atomic force microscopy. Nanorings with high indium incorporation were achieved with indium content up to 50% that was then controlled using the growth time, temperature, In/Ga ratio and III/N ratio. The analysis showed that the nanoring shape is able to incorporate more indium than other nanostructures, due to the relaxing mechanism involved in the formation of the nanoring. The ideal conditions were determined to be growth of 30 second droplets with a growth time of 1 minute 30 seconds at 770 C to achieve the most well developed rings with the highest indium concentration.
ContributorsZaidi, Zohair (Author) / Mahajan, Subhash (Thesis advisor) / O'Connell, Michael J (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
151301-Thumbnail Image.png
Description
Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. Furthermore, ZnO is a potential material for transparent conducting oxide material competing with indium tin oxide (ITO), graphene, and carbon nanotube film. It has been known as a conductive material when doped with elements such as

Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. Furthermore, ZnO is a potential material for transparent conducting oxide material competing with indium tin oxide (ITO), graphene, and carbon nanotube film. It has been known as a conductive material when doped with elements such as indium, gallium and aluminum. The solubility of those dopant elements in ZnO is still debatable; but, it is necessary to find alternative conducting materials when their form is film or nanostructure for display devices. This is a consequence of the ever increasing price of indium. In addition, a new generation solar cell (nanostructured or hybrid photovoltaics) requires compatible materials which are capable of free standing on substrates without seed or buffer layers and have the ability introduce electrons or holes pathway without blocking towards electrodes. The nanostructures for solar cells using inorganic materials such as silicon (Si), titanium oxide (TiO2), and ZnO have been an interesting topic for research in solar cell community in order to overcome the limitation of efficiency for organic solar cells. This dissertation is a study of the rational solution-based synthesis of 1-dimentional ZnO nanomaterial and its solar cell applications. These results have implications in cost effective and uniform nanomanufacturing for the next generation solar cells application by controlling growth condition and by doping transition metal element in solution.
ContributorsChoi, Hyung Woo (Author) / Alford, Terry L. (Thesis advisor) / Krause, Stephen (Committee member) / Theodore, N. David (Committee member) / Arizona State University (Publisher)
Created2012
151600-Thumbnail Image.png
Description
Research has shown that the ability to smell is the most direct sense an individual can experience. With every breath a person takes, the brain recognizes thousands of molecules and makes connections with our memories to determine their composition. With the amount of research looking into how and why we

Research has shown that the ability to smell is the most direct sense an individual can experience. With every breath a person takes, the brain recognizes thousands of molecules and makes connections with our memories to determine their composition. With the amount of research looking into how and why we smell, researchers still have little understanding of how the nose and brain process an aroma, and how emotional and physical behavior is impacted. This research focused on the affects smell has on a caregiver in a simulated Emergency Department setting located in the SimET of Banner Good Samaritan Medical Center in Phoenix, Arizona. The study asked each participant to care for a programmed mannequin, or "patient", while performing simple computer-based tasks, including memory and recall, multi-tasking, and mood-mapping to gauge physical and mental performance. Three different aromatic environments were then introduced through diffusion and indirect inhalation near the participants' task space: 1) a control (no smell), 2) an odor (simulated dirty feet), and 3) an aroma (one of four true essential oils plus a current odor-eliminating compound used in many U.S. Emergency Departments). This study was meant to produce a stressful environment by leading the caregiver to stay in constant movement throughout the study through timed tasks, uncooperative equipment, and a needy "patient". The goal of this research was to determine if smells, and of what form of pleasantness and repulsiveness, can have an effect on the physical and mental performance of emergency caregivers. Findings from this study indicated that the "odor eliminating" method currently used in typical Emergency Departments, coffee grounds, is more problematic than helpful, and the introduction of true essential oils may not only reduce stress, but increase efficiency and, in turn, job satisfaction.
ContributorsClark, Carina M (Author) / Bernardi, Jose (Thesis advisor) / Heywood, William (Committee member) / Watts, Richard (Committee member) / Rosso, Rachel (Committee member) / Arizona State University (Publisher)
Created2013
151481-Thumbnail Image.png
Description
A growing body of research shows that characteristics of the built environment in healthcare facilities impact patients' well-being. Research findings suggest that patients form judgments of perceived quality care based on environmental characteristics. Patient outcomes and ratings of quality of care are linked to the environments' ability to reduce patient

A growing body of research shows that characteristics of the built environment in healthcare facilities impact patients' well-being. Research findings suggest that patients form judgments of perceived quality care based on environmental characteristics. Patient outcomes and ratings of quality of care are linked to the environments' ability to reduce patient stress as well as influence perceptions of quality of care. Historically, this research has been focused in the hospital environment. The United States healthcare system heavily relies on hospitals to treat (rather than prevent) illness, leading to a high per capita healthcare expenditure. Currently, this healthcare system is shifting to rely heavily on ambulatory care settings and primary care providers to detect, prevent, and manage expensive medical conditions. The highest rates of preventable disease and the lowest rates of primary care usage are found in the young adult population (ages 18 to 24). More than any other patient population, this segment rates their satisfaction with healthcare significantly low. For this population education, early detection, and monitoring will be key for a primary care focused model to have the greatest impact on care and long-term savings. Strong patient-physician connections ensure the success of a primary care focused model. The physical environment has the opportunity to provide a message consistent with a physician's practice values and goals. Environmental cues in the waiting area have the potential to relay these messages to the patient prior to physician contact. Through an understanding and optimization of these cues patient perception of quality of care may be increased, thus improving the patient-physician relationship. This study provides insight on how to optimize environmental impact on the healthcare experience. This descriptive exploratory study utilized a non-verbal self-report instrument to collect demographic information and measure participant's responses to two panoramic photos of primary care provider waiting areas. Respondents were asked to identify physical elements in the photos that contributed to their perceptions of the quality of care to be expected. The sample population consisted of 33, 18 to 24 year-olds leaving a total of 234 emotional markers and comments. Qualitative and quantitative revealed three key themes of appeal, comfort, and regard. Physical elements, in the photos, related to the themes include: General areas that were important to the respondents were the seating and reception areas, as well as the overall appearance of the waiting area. Key elements identified to be significant characteristics influencing perceptions of quality of care are presented in this study.
ContributorsBadura, Kerri (Author) / Lamb, Gerri (Thesis advisor) / Heywood, William (Committee member) / Wolf, Peter (Committee member) / Arizona State University (Publisher)
Created2012
151513-Thumbnail Image.png
Description
Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material,

Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material, manufacturing process, use condition, as well as, the inherent variabilities present in the system, greatly influence product reliability. Accurate reliability analysis requires an integrated approach to concurrently account for all these factors and their synergistic effects. Such an integrated and robust methodology can be used in design and development of new and advanced microelectronics systems and can provide significant improvement in cycle-time, cost, and reliability. IMPRPK approach is based on a probabilistic methodology, focusing on three major tasks of (1) Characterization of BGA solder joints to identify failure mechanisms and obtain statistical data, (2) Finite Element analysis (FEM) to predict system response needed for life prediction, and (3) development of a probabilistic methodology to predict the reliability, as well as, the sensitivity of the system to various parameters and the variabilities. These tasks and the predictive capabilities of IMPRPK in microelectronic reliability analysis are discussed.
ContributorsFallah-Adl, Ali (Author) / Tasooji, Amaneh (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Jiang, Hanqing (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2013
152602-Thumbnail Image.png
Description
Generally speaking, many programs of interior design have had a gender imbalance in the student population. As a case in point, the interior design program at Arizona State University (ASU) is at present ninety percent female. While other design programs such as architecture or industrial design have achieved gender balance,

Generally speaking, many programs of interior design have had a gender imbalance in the student population. As a case in point, the interior design program at Arizona State University (ASU) is at present ninety percent female. While other design programs such as architecture or industrial design have achieved gender balance, interior design has not. This research explores the reasons why male students are not enrolling in the interior design program at ASU and to what degree gender influences the selection of a major. The objectives of this research are to determine: 1) what role gender plays in the selection of interior design as a choice of a major at ASU; 2) why might male students be hesitant to join the interior design program; 3) why female students are attracted to interior design; 4) if there are gender differences in design approach; and 5) if curricular differences between interior architecture and interior design impact the gender imbalance. A mixed method approach is used in order to answer the research questions including: a literature review, a visual ethnography, and interviews of interior design students and faculty members at ASU. The results reveal that gender might have an effect on students' decision to join the interior design program. For a male student, people questioned his sexuality because they assumed he would have to be of a certain sexual orientation to study interior design. According to a male faculty member upon visiting a middle school on career day, young boys would be interested in the projects displayed at the interior design booth until they figured out what it was. Even at a young age, the boys seemed to know that interior design was a female's domain. A participant stated that women seemed to be less critical of the men's projects and were more critical of each other. A male respondent stated that on the occasion there were no men in the class the studio culture changed. Another stated that interior design students did not take feedback as well as others and need to be affirmed more often. Gender socialization, the history of interior design as a feminine career, and the title "interior design" itself are all possible factors that could deter male students from joining the program. The insights acquired from this research will provide students and faculty members from The Design School and beyond a better understanding of gender socialization and what the interior design program has to offer.
ContributorsRuff, Charlene (Author) / Giard, Jacques (Thesis advisor) / Heywood, William (Committee member) / Margolis, Eric (Committee member) / Arizona State University (Publisher)
Created2014