This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

132597-Thumbnail Image.png
Description
Extensive literature exists examining the maximum mitigation potential of
biochar. This research has found biochar to hold massive potential as a means of stabilizing current levels of atmospheric carbon. Furthermore, the research and resources to massively expand biochar production exist, yet one could easily argue the industry is not expanding

Extensive literature exists examining the maximum mitigation potential of
biochar. This research has found biochar to hold massive potential as a means of stabilizing current levels of atmospheric carbon. Furthermore, the research and resources to massively expand biochar production exist, yet one could easily argue the industry is not expanding quickly enough given its known potential benefits. This paper serves to address this lack of growth, and identified a lack of formalized networks for knowledge and innovation exchanges amongst biochar production firms as a leading obstacle to quick expansion. I focus on two particular biochar production firms operating in vastly different contexts and analyze both through a conceptual framework known as “knowledge networks”. In depth literature on the topic of knowledge networks highlight the dynamics of exchange, including the obstacles in establishing such a network. I applied the findings from a multitude of case studies centered around knowledge networks to biochar production, asserting that exchange networks centered around reciprocity would serve as a catalyst to the growth of the biochar industry. I also assert that public research institutions such as Arizona State University would play a critical role in such a network, as they would serve as a mutual party connecting two private entities. Private biochar production firms around the world would be exposed to new knowledge and information that would serve to maximize the energy value of their product while reducing the environmental externalities associated with their process.
ContributorsChernak, Jarod Ross (Author) / Chhetri, Netra (Thesis director) / Henderson, Mark (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132892-Thumbnail Image.png
Description
There is an increasing need to understand and develop clean cooking technologies in low- and middle-income countries (LMICs). The provision of clean energy where modern energy is not available is important in advancing the 17 sustainable development goals as set by the United Nations. Green charcoal is a cooking fuel

There is an increasing need to understand and develop clean cooking technologies in low- and middle-income countries (LMICs). The provision of clean energy where modern energy is not available is important in advancing the 17 sustainable development goals as set by the United Nations. Green charcoal is a cooking fuel technology made from ground and compressed biochar, an organic material made from heating a feedstock (biomass, forest residues, agriculture waste, invasive species, etc.) in an oxygen deprived environment to high temperatures. Green charcoal behaves similarly to wood charcoal or coal but is different from these energy products in that it is produced from biomass, not from wood or fossil fuels. Green charcoal has gained prominence as a cooking fuel technology in South-East Asia recently. Within the context of Nepal, green charcoal is currently being produced using lantana camara, an invasive species in Nepal, as a feedstock in order to commoditize the otherwise destructive plant. The purpose of this study was to understand the innovation ecosystem of green charcoal within the context of Nepal’s renewable energy sector. An innovation ecosystem is all of the actors, users and conditions that contribute to the success of a particular method of value creation. Through a series of field interviews, it was determined that the main actors of the green charcoal innovation ecosystem are forest resources governance agencies, biochar producers, boundary organizations, briquette producers, distributors/vendors, the political economy of energy, and the food culture of individuals. The end user (user segment) of this innovation ecosystem is restaurants. Each actor was further analyzed based on the Ecosystem Pie Model methodology as created by Talmar, et al. using the actor’s individual resources, activities, value addition, value capture, dependence on green charcoal and the associated risk as the building blocks for analysis. Based on ecosystem analysis, suggestions were made on how to strengthen the green charcoal innovation ecosystem in Nepal’s renewable energy sector based on actor-actor and actor-green charcoal interactions, associated risks and dependence, and existing knowledge and technology gaps. It was determined that simply deploying a clean cooking technology does not guarantee success of the technology. Rather, there are a multitude of factors that contribute to the success of the clean cooking technology that deserve equal amounts of attention in order to successfully implement the technology.
ContributorsDieu, Megan (Author) / Chhetri, Netra (Thesis director) / Henderson, Mark (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
135291-Thumbnail Image.png
Description
Acyl Carrier Protein (ACP) is a small, acidic protein that plays an essential role in fatty acid synthesis by elongating fatty acid chains. ACP was isolated from an extract of a modified strain of Synechocystis sp. PCC 6803 that contains a thioesterase and from which the acyl-ACP synthetase has been

Acyl Carrier Protein (ACP) is a small, acidic protein that plays an essential role in fatty acid synthesis by elongating fatty acid chains. ACP was isolated from an extract of a modified strain of Synechocystis sp. PCC 6803 that contains a thioesterase and from which the acyl-ACP synthetase has been deleted. Using ammonium sulfate precipitation to isolate a crude protein fraction containing ACP, immunoblot analysis was performed to determine relative amounts of free and acylated-ACP in the cell. The nature of fatty acids attached to ACP was determined by creating butylamide derivatives that were analyzed using GC/MS. Immunoblot analysis showed a roughly 1:1 ratio of acylated ACP to free ACP in the cell depending on the nutritional state of the cell. From GC/MS data it was determined that palmitic acid was the predominate component of acyl groups attached to ACP. The results indicate that there is a significant amount of acyl-ACP, a feedback inhibitor of early steps in the fatty acid biosynthesis pathway, in the cell. Moreover, the availability of free ACP may also limit fatty acid biosynthesis. Most likely it is necessary for ACP to be overexpressed or to have the palmitic acid cleaved off in order to synthesize optimal amounts of lauric acid to be used for cyanobacterial biofuel production.
ContributorsWu, Sharon Gao (Author) / Vermaas, Willem (Thesis director) / Redding, Kevin (Committee member) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
166286-Thumbnail Image.png
Description

Food insecurity and hunger are strongly interconnected with poverty and are major concerns across the world. Poverty stems from many interconnected issues and creates what are known as Food Deserts. The challenge then becomes: How do we mitigate the effects of food deserts to achieve food security? This paper proposes

Food insecurity and hunger are strongly interconnected with poverty and are major concerns across the world. Poverty stems from many interconnected issues and creates what are known as Food Deserts. The challenge then becomes: How do we mitigate the effects of food deserts to achieve food security? This paper proposes a design and a potential solution to address this question of food insecurity with the modification of a traditional aquaponics system that can potentially deliver the same product at a lower cost. Stakeholder input was key to the product design and was captured through a set of carefully conducted interviews. An in-depth literature review also informed the redesign process, and a final, viable product was proposed. Thus far, the proposed aquaponics system has demonstrated to be a promising cost-effective, sustainable, solution that could provide a majority of the food needs for a family.

ContributorsGreathouse, Madelynne (Author) / Macia, Narciso (Thesis director) / Henderson, Mark (Committee member) / Briggs, Georgette (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Sustainability (Contributor) / Department of Finance (Contributor)
Created2022-05