This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 82
152241-Thumbnail Image.png
Description
The efficacy of deep brain stimulation (DBS) in Parkinson's disease (PD) has been convincingly demonstrated in studies that compare motor performance with and without stimulation, but characterization of performance at intermediate stimulation amplitudes has been limited. This study investigated the effects of changing DBS amplitude in order to assess dose-response

The efficacy of deep brain stimulation (DBS) in Parkinson's disease (PD) has been convincingly demonstrated in studies that compare motor performance with and without stimulation, but characterization of performance at intermediate stimulation amplitudes has been limited. This study investigated the effects of changing DBS amplitude in order to assess dose-response characteristics, inter-subject variability, consistency of effect across outcome measures, and day-to-day variability. Eight subjects with PD and bilateral DBS systems were evaluated at their clinically determined stimulation (CDS) and at three reduced amplitude conditions: approximately 70%, 30%, and 0% of the CDS (MOD, LOW, and OFF, respectively). Overall symptom severity and performance on a battery of motor tasks - gait, postural control, single-joint flexion-extension, postural tremor, and tapping - were assessed at each condition using the motor section of the Unified Parkinson's Disease Rating Scale (UPDRS-III) and quantitative measures. Data were analyzed to determine whether subjects demonstrated a threshold response (one decrement in stimulation resulted in ≥ 70% of the maximum change) or a graded response to reduced stimulation. Day-to-day variability was assessed using the CDS data from the three testing sessions. Although the cohort as a whole demonstrated a graded response on several measures, there was high variability across subjects, with subsets exhibiting graded, threshold, or minimal responses. Some subjects experienced greater variability in their CDS performance across the three days than the change induced by reducing stimulation. For several tasks, a subset of subjects exhibited improved performance at one or more of the reduced conditions. Reducing stimulation did not affect all subjects equally, nor did it uniformly affect each subject's performance across tasks. These results indicate that altered recruitment of neural structures can differentially affect motor capabilities and demonstrate the need for clinical consideration of the effects on multiple symptoms across several days when selecting DBS parameters.
ContributorsConovaloff, Alison (Author) / Abbas, James (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Mahant, Padma (Committee member) / Jung, Ranu (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
152248-Thumbnail Image.png
Description
Background: Evidence about the purported hypoglycemic and hypolipidemic effects of nopales (prickly pear cactus pads) is limited. Objective: To evaluate the efficacy of nopales for improving cardiometabolic risk factors and oxidative stress, compared to control, in adults with hypercholesterolemia. Design: In a randomized crossover trial, participants were assigned to a

Background: Evidence about the purported hypoglycemic and hypolipidemic effects of nopales (prickly pear cactus pads) is limited. Objective: To evaluate the efficacy of nopales for improving cardiometabolic risk factors and oxidative stress, compared to control, in adults with hypercholesterolemia. Design: In a randomized crossover trial, participants were assigned to a 2-wk intervention with 2 cups/day of nopales or cucumbers (control), with a 2 to 3-wk washout period. The study included 16 adults (5 male; 46±14 y; BMI = 31.4±5.7 kg/m2) with moderate hypercholesterolemia (low density lipoprotein cholesterol [LDL-c] = 137±21 mg/dL), but otherwise healthy. Main outcomes measured included: dietary intake (energy, macronutrients and micronutrients), cardiometabolic risk markers (total cholesterol, LDL-c, high density lipoprotein cholesterol [HDL-c], triglycerides, cholesterol distribution in LDL and HDL subfractions, glucose, insulin, homeostasis model assessment, and C-reactive protein), and oxidative stress markers (vitamin C, total antioxidant capacity, oxidized LDL, and LDL susceptibility to oxidation). Effects of treatment, time, or interactions were assessed using repeated measures ANOVA. Results: There was no significant treatment-by-time effect for any dietary composition data, lipid profile, cardiometabolic outcomes, or oxidative stress markers. A significant time effect was observed for energy, which was decreased in both treatments (cucumber, -8.3%; nopales, -10.1%; pTime=0.026) mostly due to lower mono and polyunsaturated fatty acids intake (pTime=0.023 and pTime=0.003, respectively). Both treatments significantly increased triglyceride concentrations (cucumber, 14.8%; nopales, 15.2%; pTime=0.020). Despite the lack of significant treatment-by-time effects, great individual response variability was observed for all outcomes. After the cucumber and nopales phases, a decrease in LDL-c was observed in 44% and 63% of the participants respectively. On average LDL-c was decreased by 2.0 mg/dL (-1.4%) after the cucumber phase and 3.9 mg/dL (-2.9%) after the nopales phase (pTime=0.176). Pro-atherogenic changes in HDL subfractions were observed in both interventions over time, by decreasing the proportion of HDL-c in large HDL (cucumber, -5.1%; nopales, -5.9%; pTime=0.021) and increasing the proportion in small HDL (cucumber, 4.1%; nopales, 7.9%; pTime=0.002). Conclusions: These data do not support the purported benefits of nopales at doses of 2 cups/day for 2-wk on markers of lipoprotein profile, cardiometabolic risk, and oxidative stress in hypercholesterolemic adults.
ContributorsPereira Pignotti, Giselle Adriana (Author) / Vega-Lopez, Sonia (Thesis advisor) / Gaesser, Glenn (Committee member) / Keller, Colleen (Committee member) / Shaibi, Gabriel (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2013
151742-Thumbnail Image.png
Description
This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We

This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We test whether motor learning transfer is more related to use of shared neural structures between imagery and motor execution or to more generalized cognitive factors. Using an EEG-BCI, we train one group of participants to control the movements of a cursor using embodied motor imagery. A second group is trained to control the cursor using abstract motor imagery. A third control group practices moving the cursor using an arm and finger on a touch screen. We hypothesized that if motor learning transfer is related to the use of shared neural structures then the embodied motor imagery group would show more learning transfer than the abstract imaging group. If, on the other hand, motor learning transfer results from more general cognitive processes, then the abstract motor imagery group should also demonstrate motor learning transfer to the manual performance of the same task. Our findings support that motor learning transfer is due to the use of shared neural structures between imaging and motor execution of a task. The abstract group showed no motor learning transfer despite being better at EEG-BCI control than the embodied group. The fact that more participants were able to learn EEG-BCI control using abstract imagery suggests that abstract imagery may be more suitable for EEG-BCIs for some disabilities, while embodied imagery may be more suitable for others. In Part 2, EEG data collected in the above experiment was used to train an artificial neural network (ANN) to map EEG signals to machine commands. We found that our open-source ANN using spectrograms generated from SFFTs is fundamentally different and in some ways superior to Emotiv's proprietary method. Our use of novel combinations of existing technologies along with abstract and embodied imagery facilitates adaptive customization of EEG-BCI control to meet needs of individual users.
Contributorsda Silva, Flavio J. K (Author) / Mcbeath, Michael K (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Presson, Clark (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2013
152011-Thumbnail Image.png
Description
Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions

Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions and forces are coordinated during natural manipulation tasks, and b) what mechanisms underlie the formation and retention of internal representations of dexterous manipulation. This dissertation addresses these two questions through five experiments that are based on novel grip devices and experimental protocols. It was found that high-level representation of manipulation tasks can be learned in an effector-independent fashion. Specifically, when challenged by trial-to-trial variability in finger positions or using digits that were not previously engaged in learning the task, subjects could adjust finger forces to compensate for this variability, thus leading to consistent task performance. The results from a follow-up experiment conducted in a virtual reality environment indicate that haptic feedback is sufficient to implement the above coordination between digit position and forces. However, it was also found that the generalizability of a learned manipulation is limited across tasks. Specifically, when subjects learned to manipulate the same object across different contexts that require different motor output, interference was found at the time of switching contexts. Data from additional studies provide evidence for parallel learning processes, which are characterized by different rates of decay and learning. These experiments have provided important insight into the neural mechanisms underlying learning and control of object manipulation. The present findings have potential biomedical applications including brain-machine interfaces, rehabilitation of hand function, and prosthetics.
ContributorsFu, Qiushi (Author) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Santos, Veronica (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2013
152013-Thumbnail Image.png
Description
Reaching movements are subject to noise in both the planning and execution phases of movement production. Although the effects of these noise sources in estimating and/or controlling endpoint position have been examined in many studies, the independent effects of limb configuration on endpoint variability have been largely ignored. The present

Reaching movements are subject to noise in both the planning and execution phases of movement production. Although the effects of these noise sources in estimating and/or controlling endpoint position have been examined in many studies, the independent effects of limb configuration on endpoint variability have been largely ignored. The present study investigated the effects of arm configuration on the interaction between planning noise and execution noise. Subjects performed reaching movements to three targets located in a frontal plane. At the starting position, subjects matched one of two desired arm configuration 'templates' namely "adducted" and "abducted". These arm configurations were obtained by rotations along the shoulder-hand axis, thereby maintaining endpoint position. Visual feedback of the hand was varied from trial to trial, thereby increasing uncertainty in movement planning and execution. It was hypothesized that 1) pattern of endpoint variability would be dependent on arm configuration and 2) that these differences would be most apparent in conditions without visual feedback. It was found that there were differences in endpoint variability between arm configurations in both visual conditions, but these differences were much larger when visual feedback was withheld. The overall results suggest that patterns of endpoint variability are highly dependent on arm configuration, particularly in the absence of visual feedback. This suggests that in the presence of vision, movement planning in 3D space is performed using coordinates that are largely arm configuration independent (i.e. extrinsic coordinates). In contrast, in the absence of vision, movement planning in 3D space reflects a substantial contribution of intrinsic coordinates.
ContributorsLakshmi Narayanan, Kishor (Author) / Buneo, Christopher (Thesis advisor) / Santello, Marco (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
151478-Thumbnail Image.png
Description
Gene manipulation techniques, such as RNA interference (RNAi), offer a powerful method for elucidating gene function and discovery of novel therapeutic targets in a high-throughput fashion. In addition, RNAi is rapidly being adopted for treatment of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease, etc. However, a major challenge

Gene manipulation techniques, such as RNA interference (RNAi), offer a powerful method for elucidating gene function and discovery of novel therapeutic targets in a high-throughput fashion. In addition, RNAi is rapidly being adopted for treatment of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease, etc. However, a major challenge in both of the aforementioned applications is the efficient delivery of siRNA molecules, plasmids or transcription factors to primary cells such as neurons. A majority of the current non-viral techniques, including chemical transfection, bulk electroporation and sonoporation fail to deliver with adequate efficiencies and the required spatial and temporal control. In this study, a novel optically transparent biochip is presented that can (a) transfect populations of primary and secondary cells in 2D culture (b) readily scale to realize high-throughput transfections using microscale electroporation and (c) transfect targeted cells in culture with spatial and temporal control. In this study, delivery of genetic payloads of different sizes and molecular characteristics, such as GFP plasmids and siRNA molecules, to precisely targeted locations in primary hippocampal and HeLa cell cultures is demonstrated. In addition to spatio-temporally controlled transfection, the biochip also allowed simultaneous assessment of a) electrical activity of neurons, b) specific proteins using fluorescent immunohistochemistry, and c) sub-cellular structures. Functional silencing of GAPDH in HeLa cells using siRNA demonstrated a 52% reduction in the GAPDH levels. In situ assessment of actin filaments post electroporation indicated a sustained disruption in actin filaments in electroporated cells for up to two hours. Assessment of neural spike activity pre- and post-electroporation indicated a varying response to electroporation. The microarray based nature of the biochip enables multiple independent experiments on the same culture, thereby decreasing culture-to-culture variability, increasing experimental throughput and allowing cell-cell interaction studies. Further development of this technology will provide a cost-effective platform for performing high-throughput genetic screens.
ContributorsPatel, Chetan (Author) / Muthuswamy, Jitendran (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Jain, Tilak (Committee member) / Caplan, Michael (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2012
152558-Thumbnail Image.png
Description
Sustaining a fall can be hazardous for those with low bone mass. Interventions exist to reduce fall-risk, but may not retain long-term interest. "Exergaming" has become popular in older adults as a therapy, but no research has been done on its preventative ability in non-clinical populations. The purpose was to

Sustaining a fall can be hazardous for those with low bone mass. Interventions exist to reduce fall-risk, but may not retain long-term interest. "Exergaming" has become popular in older adults as a therapy, but no research has been done on its preventative ability in non-clinical populations. The purpose was to determine the impact of 12-weeks of interactive play with the Wii Fit® on balance, muscular fitness, and bone health in peri- menopausal women. METHODS: 24 peri-menopausal-women were randomized into study groups. Balance was assessed using the Berg/FICSIT-4 and a force plate. Muscular strength was measured using the isokinetic dynamometer at 60°/180°/240°/sec and endurance was assessed using 50 repetitions at 240°/sec. Bone health was tracked using dual-energy x-ray absorptiometry (DXA) for the hip/lumbar spine and qualitative ultrasound (QUS) of the heel. Serum osteocalcin was assessed by enzyme immunoassay. Physical activity was quantified using the Women's Health Initiative Physical Activity Questionnaire and dietary patterns were measured using the Nurses' Health Food Frequency Questionnaire. All measures were repeated at weeks 6 and 12, except for the DXA, which was completed pre-post. RESULTS: There were no significant differences in diet and PA between groups. Wii Fit® training did not improve scores on the Berg/FICSIT-4, but improved center of pressure on the force plate for Tandem Step, Eyes Closed (p-values: 0.001-0.051). There were no significant improvements for muscular fitness at any of the angular velocities. DXA BMD of the left femoral neck improved in the intervention group (+1.15%) and decreased in the control (-1.13%), but no other sites had significant changes. Osteocalcin indicated no differences in bone turnover between groups at baseline, but the intervention group showed increased bone turnover between weeks 6 and 12. CONCLUSIONS: Findings indicate that WiiFit® training may improve balance by preserving center of pressure. QUS, DXA and osteocalcin data confirm that those in the intervention group were experiencing more bone turnover and bone formation than the control group. In summary, twelve weeks of strength /balance training with the Wii Fit® shows promise as a preventative intervention to reduce fall and fracture risk in non-clinical middle aged women who are at risk.
ContributorsWherry, Sarah Jo (Author) / Swan, Pamela D (Thesis advisor) / Adams, Marc (Committee member) / Der Ananian, Cheryl (Committee member) / Sweazea, Karen (Committee member) / Vaughan, Linda (Committee member) / Arizona State University (Publisher)
Created2014
152881-Thumbnail Image.png
Description
Dexterous manipulation is a representative task that involves sensorimotor integration underlying a fine control of movements. Over the past 30 years, research has provided significant insight, including the control mechanisms of force coordination during manipulation tasks. Successful dexterous manipulation is thought to rely on the ability to integrate the sense

Dexterous manipulation is a representative task that involves sensorimotor integration underlying a fine control of movements. Over the past 30 years, research has provided significant insight, including the control mechanisms of force coordination during manipulation tasks. Successful dexterous manipulation is thought to rely on the ability to integrate the sense of digit position with motor commands responsible for generating digit forces and placement. However, the mechanisms underlying the phenomenon of digit position-force coordination are not well understood. This dissertation addresses this question through three experiments that are based on psychophysics and object lifting tasks. It was found in psychophysics tasks that sensed relative digit position was accurately reproduced when sensorimotor transformations occurred with larger vertical fingertip separations, within the same hand, and at the same hand posture. The results from a follow-up experiment conducted in the same digit position-matching task while generating forces in different directions reveal a biased relative digit position toward the direction of force production. Specifically, subjects reproduced the thumb CoP higher than the index finger CoP when vertical digit forces were directed upward and downward, respectively, and vice versa. It was also found in lifting tasks that the ability to discriminate the relative digit position prior to lifting an object and modulate digit forces to minimize object roll as a function of digit position are robust regardless of whether motor commands for positioning the digits on the object are involved. These results indicate that the erroneous sensorimotor transformations of relative digit position reported here must be compensated during dexterous manipulation by other mechanisms, e.g., visual feedback of fingertip position. Furthermore, predicted sensory consequences derived from the efference copy of voluntary motor commands to generate vertical digit forces may override haptic sensory feedback for the estimation of relative digit position. Lastly, the sensorimotor transformations from haptic feedback to digit force modulation to position appear to be facilitated by motor commands for active digit placement in manipulation.
ContributorsShibata, Daisuke (Author) / Santello, Marco (Thesis advisor) / Dounskaia, Natalia (Committee member) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / McBeath, Michael (Committee member) / Arizona State University (Publisher)
Created2014
153465-Thumbnail Image.png
Description
ABSTRACT

Asthma is a high-stress, chronic medical condition; 1 in 12 adults in the United States combat the bronchoconstriction from asthma. However, there are very few strong studies indicating any alternative therapy for asthmatics, particularly following a cold incidence. Vitamin C has been proven to be effective for other high-stress

ABSTRACT

Asthma is a high-stress, chronic medical condition; 1 in 12 adults in the United States combat the bronchoconstriction from asthma. However, there are very few strong studies indicating any alternative therapy for asthmatics, particularly following a cold incidence. Vitamin C has been proven to be effective for other high-stress populations, but the asthmatic population has not yet been trialed. This study examined the effectiveness of vitamin C supplementation during the cold season on cold incidence and asthmatic symptoms. Asthmatics, otherwise-healthy, who were non-smokers and non-athletes between the ages of 18 and 55 with low plasma vitamin C concentrations were separated by anthropometrics and vitamin C status into two groups: either vitamin C (500 mg vitamin C capsule consumed twice per day) or control (placebo capsule consumed twice per day). Subjects were instructed to complete the Wisconsin Upper Respiratory Symptom Survey-21 and a short asthma symptoms questionnaire daily along with a shortened vitamin C Food Frequency Questionnaire and physical activity questionnaire weekly for eight weeks. Blood samples were drawn at Week 0 (baseline), Week 4, and Week 8. Compliance was monitored through a calendar check sheet. The vitamin C levels of both groups increased from Week 0 to Week 4, but decreased in the vitamin C group at Week 8. The vitamin C group had a 19% decrease in plasma histamine while the control group had a 53% increase in plasma histamine at the end of the trial, but this was not statistically significant (p>0.05). Total symptoms recorded from WURSS-21 were 129.3±120.7 for the vitamin C and 271.0±293.9, but the difference was not statistically significant (p=0.724). Total asthma symptoms also slightly varied between the groups, but again was not statistically significant (p=0.154). These results were hindered by the low number of subjects recruited. Continued research in this study approach is necessary to definitively reject or accept the potential role of vitamin C in asthma and cold care.
ContributorsEarhart, Kathryn Michelle (Author) / Johnston, Carol (Thesis advisor) / Sweazea, Karen (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2015
153418-Thumbnail Image.png
Description
This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum

This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum of perceived sound sources was close to four. The second experiment asked whether the amplitude modulation of multiple static sound sources could lead to the perception of auditory motion. On the horizontal and vertical planes, four independent noise sound sources with 60° spacing were amplitude modulated with consecutively larger phase delay. At lower modulation rates, motion could be perceived by human listeners in both cases. The third experiment asked whether several sources at static positions could serve as "acoustic landmarks" to improve the localization of other sources. Four continuous speech sound sources were placed on the horizontal plane with 90° spacing and served as the landmarks. The task was to localize a noise that was played for only three seconds when the listener was passively rotated in a chair in the middle of the loudspeaker array. The human listeners were better able to localize the sound sources with landmarks than without. The other experiments were with the aid of an acoustic manikin in an attempt to fuse binaural recording and motion data to localize sounds sources. A dummy head with recording devices was mounted on top of a rotating chair and motion data was collected. The fourth experiment showed that an Extended Kalman Filter could be used to localize sound sources in a recursive manner. The fifth experiment demonstrated the use of a fitting method for separating multiple sounds sources.
ContributorsZhong, Xuan (Author) / Yost, William (Thesis advisor) / Zhou, Yi (Committee member) / Dorman, Michael (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2015