This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 161
149996-Thumbnail Image.png
Description
One of the challenges in future semiconductor device design is excessive rise of power dissipation and device temperatures. With the introduction of new geometrically confined device structures like SOI, FinFET, nanowires and continuous incorporation of new materials with poor thermal conductivities in the device active region, the device thermal problem

One of the challenges in future semiconductor device design is excessive rise of power dissipation and device temperatures. With the introduction of new geometrically confined device structures like SOI, FinFET, nanowires and continuous incorporation of new materials with poor thermal conductivities in the device active region, the device thermal problem is expected to become more challenging in coming years. This work examines the degradation in the ON-current due to self-heating effects in 10 nm channel length silicon nanowire transistors. As part of this dissertation, a 3D electrothermal device simulator is developed that self-consistently solves electron Boltzmann transport equation with 3D energy balance equations for both the acoustic and the optical phonons. This device simulator predicts temperature variations and other physical and electrical parameters across the device for different bias and boundary conditions. The simulation results show insignificant current degradation for nanowire self-heating because of pronounced velocity overshoot effect. In addition, this work explores the role of various placement of the source and drain contacts on the magnitude of self-heating effect in nanowire transistors. This work also investigates the simultaneous influence of self-heating and random charge effects on the magnitude of the ON current for both positively and negatively charged single charges. This research suggests that the self-heating effects affect the ON-current in two ways: (1) by lowering the barrier at the source end of the channel, thus allowing more carriers to go through, and (2) via the screening effect of the Coulomb potential. To examine the effect of temperature dependent thermal conductivity of thin silicon films in nanowire transistors, Selberherr's thermal conductivity model is used in the device simulator. The simulations results show larger current degradation because of self-heating due to decreased thermal conductivity . Crystallographic direction dependent thermal conductivity is also included in the device simulations. Larger degradation is observed in the current along the [100] direction when compared to the [110] direction which is in agreement with the values for the thermal conductivity tensor provided by Zlatan Aksamija.
ContributorsHossain, Arif (Author) / Vasileska, Dragica (Thesis advisor) / Ahmed, Shaikh (Committee member) / Bakkaloglu, Bertan (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
149755-Thumbnail Image.png
Description
When people pick up the phone to call a telephone quitline, they are taking an important step towards changing their smoking behavior. The current study investigated the role of a critical cognition in the cessation process--self-efficacy. Self-efficacy is thought to be influential in behavior change processes including those involved in

When people pick up the phone to call a telephone quitline, they are taking an important step towards changing their smoking behavior. The current study investigated the role of a critical cognition in the cessation process--self-efficacy. Self-efficacy is thought to be influential in behavior change processes including those involved in the challenging process of stopping tobacco use. By applying basic principles of self-efficacy theory to smokers utilizing a telephone quitline, this study advanced our understanding of the nature of self-efficacy in a "real-world" cessation setting. Participants received between one and four intervention calls aimed at supporting them through their quit attempt. Concurrent with the initiation of this study, three items (confidence, stress, and urges) were added to the standard telephone protocol and assessed at each call. Two principal sets of hypotheses were tested using a combination of ANCOVAs and multiple regression analyses. The first set of hypotheses explored how self-efficacy and changes in self-efficacy within individuals were associated with cessation outcomes. Most research has found a positive linear relation between self-efficacy and quit outcomes, but this study tested the possibility that excessively high self-efficacy may actually reflect an overconfidence bias, and in some cases be negatively related to cessation outcomes. The second set of hypotheses addressed several smoking-related factors expected to affect self-efficacy. As predicted, higher baseline self-efficacy and increases in self-efficacy were associated with higher rates of quitting. However, contrary to predictions, there was no evidence that overconfidence led to diminished cessation success. Finally, as predicted, shorter duration of quit attempts, shorter time to relapse, and stronger urges all were associated with lower self-efficacy. In conclusion, understanding how self-efficacy and changes in self-efficacy affect and are affected by cessation outcomes is useful for informing both future research and current quitline intervention procedures.
ContributorsGoesling, Jenna (Author) / Barrera, Manuel (Thesis advisor) / Shiota, Lani (Committee member) / Enders, Craig (Committee member) / Presson, Clark (Committee member) / Arizona State University (Publisher)
Created2011
150248-Thumbnail Image.png
Description
In very small electronic devices the alternate capture and emission of carriers at an individual defect site located at the interface of Si:SiO2 of a MOSFET generates discrete switching in the device conductance referred to as a random telegraph signal (RTS) or random telegraph noise (RTN). In this research work,

In very small electronic devices the alternate capture and emission of carriers at an individual defect site located at the interface of Si:SiO2 of a MOSFET generates discrete switching in the device conductance referred to as a random telegraph signal (RTS) or random telegraph noise (RTN). In this research work, the integration of random defects positioned across the channel at the Si:SiO2 interface from source end to the drain end in the presence of different random dopant distributions are used to conduct Ensemble Monte-Carlo ( EMC ) based numerical simulation of key device performance metrics for 45 nm gate length MOSFET device. The two main performance parameters that affect RTS based reliability measurements are percentage change in threshold voltage and percentage change in drain current fluctuation in the saturation region. It has been observed as a result of the simulation that changes in both and values moderately decrease as the defect position is gradually moved from source end to the drain end of the channel. Precise analytical device physics based model needs to be developed to explain and assess the EMC simulation based higher VT fluctuations as experienced for trap positions at the source side. A new analytical model has been developed that simultaneously takes account of dopant number variations in the channel and depletion region underneath and carrier mobility fluctuations resulting from fluctuations in surface potential barriers. Comparisons of this new analytical model along with existing analytical models are shown to correlate with 3D EMC simulation based model for assessment of VT fluctuations percentage induced by a single interface trap. With scaling of devices beyond 32 nm node, halo doping at the source and drain are routinely incorporated to combat the threshold voltage roll-off that takes place with effective channel length reduction. As a final study on this regard, 3D EMC simulation method based computations of threshold voltage fluctuations have been performed for varying source and drain halo pocket length to illustrate the threshold voltage fluctuations related reliability problems that have been aggravated by trap positions near the source at the interface compared to conventional 45 nm MOSFET.
ContributorsAshraf, Nabil Shovon (Author) / Vasileska, Dragica (Thesis advisor) / Schroder, Dieter (Committee member) / Goodnick, Stephen (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2011
150207-Thumbnail Image.png
Description
Fibromyalgia (FM) is a chronic musculoskeletal disorder characterized by widespread pain, fatigue, and a variety of other comorbid physiological and psychological characteristics, including a deficit of positive affect. Recently, the focus of research on the pathophysiology of FM has considered the role of a number of genomic variants. In the

Fibromyalgia (FM) is a chronic musculoskeletal disorder characterized by widespread pain, fatigue, and a variety of other comorbid physiological and psychological characteristics, including a deficit of positive affect. Recently, the focus of research on the pathophysiology of FM has considered the role of a number of genomic variants. In the current manuscript, case-control analyses did not support the hypothesis that FM patients would differ from other chronic pain groups in catechol-O-methyltransferase (COMT) and mu-opioid receptor (OPRM1) genotype. However, evidence is provided in support of the hypothesis that functional single nucleotide polymorphisms on the COMT and OPRM1 genes would be associated with risk and resilience, respectively, in a dual processing model of pain-related positive affective regulation in FM. Forty-six female patients with a physician-confirmed diagnosis of FM completed an electronic diary that included once-daily assessments of positive affect and soft tissue pain. Multilevel modeling yielded a significant gene X environment interaction, such that individuals with met/met genotype on COMT experienced a greater decline in positive affect as daily pain increased than did either val/met or val/val individuals. A gene X environment interaction for OPRM1 also emerged, indicating that individuals with at least one asp allele were more resilient to elevations in daily pain than those homozygous for the asn allele. In sum, the findings offer researchers ample reason to further investigate the contribution of the catecholamine and opioid systems, and their associated genomic variants, to the still poorly understood experience of FM.
ContributorsFinan, Patrick Hamilton (Author) / Zautra, Alex (Thesis advisor) / Davis, Mary (Committee member) / Lemery-Chalfant, Kathryn (Committee member) / Presson, Clark (Committee member) / Arizona State University (Publisher)
Created2011
150154-Thumbnail Image.png
Description
As existing solar cell technologies come closer to their theoretical efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 50% efficiency need to be explored. New materials systems are often investigated to achieve this, but the use of existing solar cell materials in advanced concept approaches is compelling for

As existing solar cell technologies come closer to their theoretical efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 50% efficiency need to be explored. New materials systems are often investigated to achieve this, but the use of existing solar cell materials in advanced concept approaches is compelling for multiple theoretical and practical reasons. In order to include advanced concept approaches into existing materials, nanostructures are used as they alter the physical properties of these materials. To explore advanced nanostructured concepts with existing materials such as III-V alloys, silicon and/or silicon/germanium and associated alloys, fundamental aspects of using these materials in advanced concept nanostructured solar cells must be understood. Chief among these is the determination and predication of optimum electronic band structures, including effects such as strain on the band structure, and the material's opto-electronic properties. Nanostructures have a large impact on band structure and electronic properties through quantum confinement. An additional large effect is the change in band structure due to elastic strain caused by lattice mismatch between the barrier and nanostructured (usually self-assembled QDs) materials. To develop a material model for advanced concept solar cells, the band structure is calculated for single as well as vertical array of quantum dots with the realistic effects such as strain, associated with the epitaxial growth of these materials. The results show significant effect of strain in band structure. More importantly, the band diagram of a vertical array of QDs with different spacer layer thickness show significant change in band offsets, especially for heavy and light hole valence bands when the spacer layer thickness is reduced. These results, ultimately, have significance to develop a material model for advance concept solar cells that use the QD nanostructures as absorbing medium. The band structure calculations serve as the basis for multiple other calculations. Chief among these is that the model allows the design of a practical QD advanced concept solar cell, which meets key design criteria such as a negligible valence band offset between the QD/barrier materials and close to optimum band gaps, resulting in the predication of optimum material combinations.
ContributorsDahal, Som Nath (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / Roedel, Ronald (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2011
150289-Thumbnail Image.png
Description
A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual

A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual technologies and thereby providing substantial scope for further improvements in efficiency. The thesis explores photovoltaic devices using new physical processes that rely on thin layers and are capable of attaining the thermodynamic limit of photovoltaic technology. Silicon heterostructure is one of the candidate technologies in which thin films induce a minority carrier collecting junction in silicon and the devices can achieve efficiency close to the thermodynamic limits of silicon technology. The thesis proposes and experimentally establishes a new theory explaining the operation of silicon heterostructure solar cells. The theory will assist in identifying the optimum properties of thin film materials for silicon heterostructure and help in design and characterization of the devices, along with aiding in developing new devices based on this technology. The efficiency potential of silicon heterostructure is constrained by the thermodynamic limit (31%) of single junction solar cell and is considerably lower than the limit of photovoltaic conversion (~ 80 %). A further improvement in photovoltaic conversion efficiency is possible by implementing a multiple quasi-fermi level system (MQFL). A MQFL allows the absorption of sub band gap photons with current being extracted at a higher band-gap, thereby allowing to overcome the efficiency limit of single junction devices. A MQFL can be realized either by thin epitaxial layers of alternating higher and lower band gap material with nearly lattice matched (quantum well) or highly lattice mismatched (quantum dot) structure. The thesis identifies the material combination for quantum well structure and calculates the absorption coefficient of a MQFl based on quantum well. GaAsSb (barrier)/InAs(dot) was identified as a candidate material for MQFL using quantum dot. The thesis explains the growth mechanism of GaAsSb and the optimization of GaAsSb and GaAs heterointerface.
ContributorsGhosha, Kuṇāla (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
137695-Thumbnail Image.png
Description
The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks

The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks to compare the abuse potential of MDPV with one of the emergent synthetic cathinones 4-methylethcathinone (4-MEC), based on their respective ability to lower current thresholds in an intracranial self-stimulation (ICSS) paradigm. Following acute administration (0.1, 0.5, 1 and 2 mg/kg i.p.) MDPV was found to significantly lower ICSS thresholds at all doses tested (F4,35=11.549, p<0.001). However, following acute administration (0.3,1,3,10,30 mg/kg i.p) 4-MEC produced no significant ICSS threshold depression (F5,135= 0.622, p = 0.684). Together these findings suggest that while MDPV may possess significant abuse potential, other synthetic cathinones such as 4-MEC may have a drastically reduced potential for abuse.
ContributorsWegner, Scott Andrew (Author) / Olive, M. Foster (Thesis director) / Presson, Clark (Committee member) / Sanabria, Federico (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2013-05
137703-Thumbnail Image.png
Description
This study looked at the gender roles of individuals in the LGBT community, who hold gender-inverting and gender-conforming queer identities. The specific identities looked at were twinks (gender-inverted) and bears (gender-conforming) for men, and lipsticks (gender-conforming) and butches (gender-inverting) for women. The hypothesis was that individuals with gender-inverting identities would

This study looked at the gender roles of individuals in the LGBT community, who hold gender-inverting and gender-conforming queer identities. The specific identities looked at were twinks (gender-inverted) and bears (gender-conforming) for men, and lipsticks (gender-conforming) and butches (gender-inverting) for women. The hypothesis was that individuals with gender-inverting identities would react effectively to a masculine gender role selecting prime, as well as a feminine gender role selecting prime.
ContributorsBlankenship, Benjamin Tyrus (Author) / Nagoshi, Craig (Thesis director) / Presson, Clark (Committee member) / Grzanka, Patrick (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2013-05
151685-Thumbnail Image.png
Description
A proposed visible spectrum nanoscale imaging method requires material with permittivity values much larger than those available in real world materials to shrink the visible wavelength to attain the desired resolution. It has been proposed that the extraordinarily slow propagation experienced by light guided along plasmon resonant structures is a

A proposed visible spectrum nanoscale imaging method requires material with permittivity values much larger than those available in real world materials to shrink the visible wavelength to attain the desired resolution. It has been proposed that the extraordinarily slow propagation experienced by light guided along plasmon resonant structures is a viable approach to obtaining these short wavelengths. To assess the feasibility of such a system, an effective medium model of a chain of Noble metal plasmonic nanospheres is developed, leading to a straightforward calculation of the waveguiding properties. Evaluation of other models for such structures that have appeared in the literature, including an eigenvalue problem nearest neighbor approximation, a multi- neighbor approximation with retardation, and a method-of-moments method for a finite chain, show conflicting expectations of such a structure. In particular, recent publications suggest the possibility of regions of invalidity for eigenvalue problem solutions that are considered far below the onset of guidance, and for solutions that assume the loss is low enough to justify perturbation approximations. Even the published method-of-moments approach suffers from an unjustified assumption in the original interpretation, leading to overly optimistic estimations of the attenuation of the plasmon guided wave. In this work it is shown that the method of moments approach solution was dominated by the radiation from the source dipole, and not the waveguiding behavior claimed. If this dipolar radiation is removed the remaining fields ought to contain the desired guided wave information. Using a Prony's-method-based algorithm the dispersion properties of the chain of spheres are assessed at two frequencies, and shown to be dramatically different from the optimistic expectations in much of the literature. A reliable alternative to these models is to replace the chain of spheres with an effective medium model, thus mapping the chain problem into the well-known problem of the dielectric rod. The solution of the Green function problem for excitation of the symmetric longitudinal mode (TM01) is performed by numerical integration. Using this method the frequency ranges over which the rod guides and the associated attenuation are clearly seen. The effective medium model readily allows for variation of the sphere size and separation, and can be taken to the limit where instead of a chain of spheres we have a solid Noble metal rod. This latter case turns out to be the optimal for minimizing the attenuation of the guided wave. Future work is proposed to simulate the chain of photonic nanospheres and the nanowire using finite-difference time-domain to verify observed guided behavior in the Green's function method devised in this thesis and to simulate the proposed nanosensing devices.
ContributorsHale, Paul (Author) / Diaz, Rodolfo E (Thesis advisor) / Goodnick, Stephen (Committee member) / Aberle, James T., 1961- (Committee member) / Palais, Joseph (Committee member) / Arizona State University (Publisher)
Created2013
151742-Thumbnail Image.png
Description
This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We

This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We test whether motor learning transfer is more related to use of shared neural structures between imagery and motor execution or to more generalized cognitive factors. Using an EEG-BCI, we train one group of participants to control the movements of a cursor using embodied motor imagery. A second group is trained to control the cursor using abstract motor imagery. A third control group practices moving the cursor using an arm and finger on a touch screen. We hypothesized that if motor learning transfer is related to the use of shared neural structures then the embodied motor imagery group would show more learning transfer than the abstract imaging group. If, on the other hand, motor learning transfer results from more general cognitive processes, then the abstract motor imagery group should also demonstrate motor learning transfer to the manual performance of the same task. Our findings support that motor learning transfer is due to the use of shared neural structures between imaging and motor execution of a task. The abstract group showed no motor learning transfer despite being better at EEG-BCI control than the embodied group. The fact that more participants were able to learn EEG-BCI control using abstract imagery suggests that abstract imagery may be more suitable for EEG-BCIs for some disabilities, while embodied imagery may be more suitable for others. In Part 2, EEG data collected in the above experiment was used to train an artificial neural network (ANN) to map EEG signals to machine commands. We found that our open-source ANN using spectrograms generated from SFFTs is fundamentally different and in some ways superior to Emotiv's proprietary method. Our use of novel combinations of existing technologies along with abstract and embodied imagery facilitates adaptive customization of EEG-BCI control to meet needs of individual users.
Contributorsda Silva, Flavio J. K (Author) / Mcbeath, Michael K (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Presson, Clark (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2013