This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151226-Thumbnail Image.png
Description
Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning of

Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning of the relevant patterns This dissertation proposes TS representations and methods for supervised TS analysis. The approaches combine new representations that handle translations and dilations of patterns with bag-of-features strategies and tree-based ensemble learning. This provides flexibility in handling time-warped patterns in a computationally efficient way. The ensemble learners provide a classification framework that can handle high-dimensional feature spaces, multiple classes and interaction between features. The proposed representations are useful for classification and interpretation of the TS data of varying complexity. The first contribution handles the problem of time warping with a feature-based approach. An interval selection and local feature extraction strategy is proposed to learn a bag-of-features representation. This is distinctly different from common similarity-based time warping. This allows for additional features (such as pattern location) to be easily integrated into the models. The learners have the capability to account for the temporal information through the recursive partitioning method. The second contribution focuses on the comprehensibility of the models. A new representation is integrated with local feature importance measures from tree-based ensembles, to diagnose and interpret time intervals that are important to the model. Multivariate time series (MTS) are especially challenging because the input consists of a collection of TS and both features within TS and interactions between TS can be important to models. Another contribution uses a different representation to produce computationally efficient strategies that learn a symbolic representation for MTS. Relationships between the multiple TS, nominal and missing values are handled with tree-based learners. Applications such as speech recognition, medical diagnosis and gesture recognition are used to illustrate the methods. Experimental results show that the TS representations and methods provide better results than competitive methods on a comprehensive collection of benchmark datasets. Moreover, the proposed approaches naturally provide solutions to similarity analysis, predictive pattern discovery and feature selection.
ContributorsBaydogan, Mustafa Gokce (Author) / Runger, George C. (Thesis advisor) / Atkinson, Robert (Committee member) / Gel, Esma (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2012
158704-Thumbnail Image.png
Description
The Cognitive Decision Support (CDS) model is proposed. The model is widely applicable and scales to realistic, complex decision problems based on adaptive learning. The utility of a decision is discussed and four types of decisions associated with CDS model are identified. The CDS model is designed to learn decision

The Cognitive Decision Support (CDS) model is proposed. The model is widely applicable and scales to realistic, complex decision problems based on adaptive learning. The utility of a decision is discussed and four types of decisions associated with CDS model are identified. The CDS model is designed to learn decision utilities. Data enrichment is introduced to promote the effectiveness of learning. Grouping is introduced for large-scale decision learning. Introspection and adjustment are presented for adaptive learning. Triage recommendation is incorporated to indicate the trustworthiness of suggested decisions.

The CDS model and methodologies are integrated into an architecture using concepts from cognitive computing. The proposed architecture is implemented with an example use case to inventory management.

Reinforcement learning (RL) is discussed as an alternative, generalized adaptive learning engine for the CDS system to handle the complexity of many problems with unknown environments. An adaptive state dimension with context that can increase with newly available information is discussed. Several enhanced components for RL which are critical for complex use cases are integrated. Deep Q networks are embedded with the adaptive learning methodologies and applied to an example supply chain management problem on capacity planning.

A new approach using Ito stochastic processes is proposed as a more generalized method to generate non-stationary demands in various patterns that can be used in decision problems. The proposed method generates demands with varying non-stationary patterns, including trend, cyclical, seasonal, and irregular patterns. Conventional approaches are identified as special cases of the proposed method. Demands are illustrated in realistic settings for various decision models. Various statistical criteria are applied to filter the generated demands. The method is applied to a real-world example.
ContributorsKee, Seho (Author) / Runger, George C. (Thesis advisor) / Escobedo, Adolfo (Committee member) / Gel, Esma (Committee member) / Janakiram, Mani (Committee member) / Rogers, Dale (Committee member) / Arizona State University (Publisher)
Created2020